File size: 1,619 Bytes
85b9f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f416d
 
85b9f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4920621
 
85b9f18
 
 
 
 
 
 
 
 
f7f416d
 
 
85b9f18
 
 
 
 
 
f7f416d
85b9f18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
tags:
- generated_from_trainer
datasets:
- swag
metrics:
- accuracy
model-index:
- name: roberta-base-finetuned-swag
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-finetuned-swag

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the swag dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4753
- Accuracy: 0.8242

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: IPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- total_eval_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- training precision: Mixed Precision

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.45          | 1.0   | 2298 | 1.3857          | 0.4485   |
| 0.3628        | 2.0   | 4596 | 0.4802          | 0.8163   |
| 0.1821        | 3.0   | 6894 | 0.4753          | 0.8242   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.10.0+cpu
- Datasets 2.7.1
- Tokenizers 0.12.1