|
--- |
|
pipeline_tag: image-classification |
|
tags: |
|
- medical |
|
--- |
|
|
|
# Novel Approach 1 |
|
|
|
## Stacked Classifier: RF + SVM + XGB |
|
|
|
metrics: |
|
- Accuracy: 0.9911734164070612 |
|
- Balanced Accuracy: 0.9903422714760236 |
|
- MCC: 0.990784932183338 |
|
- ROC AUC Score: 0.999934898058849 |
|
- F1 Score: 0.9911734164070612 |
|
- Jaccard Score: 0.9825012866700978 |
|
- Log Loss: 0.033553756349283356 |
|
- Precision: 0.9911734164070612 |
|
- Recall: 0.9911734164070612 |
|
|
|
|
|
|
|
# Novel Approach 2 |
|
|
|
## Stacked Classifier: RF + SVM + KNN + XGB |
|
|
|
metrics: |
|
- Accuracy: 0.9922118380062306 |
|
- Balanced Accuracy: 0.9913200369813552 |
|
- MCC: 0.9918690348004674 |
|
- ROC AUC Score: 0.9999193482927975 |
|
- F1 Score: 0.9922118380062306 |
|
- Jaccard Score: 0.9845440494590417 |
|
- Log Loss: 0.03136301122428542 |
|
- Precision: 0.9922118380062306 |
|
- Recall: 0.9922118380062306 |
|
|
|
|