File size: 1,922 Bytes
60b088a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704b295
 
 
 
 
 
 
60b088a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704b295
60b088a
 
73ad605
60b088a
 
 
 
 
 
 
 
 
704b295
 
 
 
 
 
60b088a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- trl
- kto
- generated_from_trainer
model-index:
- name: llama3_false_positives_0609_KTO_hp_screening_seeds
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama3_false_positives_0609_KTO_hp_screening_seeds

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7271
- Eval/rewards/chosen: 0.0966
- Eval/logps/chosen: -206.6140
- Eval/rewards/rejected: 0.0752
- Eval/logps/rejected: -220.8250
- Eval/rewards/margins: 0.0214
- Eval/kl: 0.8580

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 9012
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |        |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.5994        | 0.9412 | 12   | 0.7301          | 0.1561 |
| 0.6           | 1.9608 | 25   | 0.7256          | 0.6149 |
| 0.5831        | 2.9804 | 38   | 0.7234          | 0.8062 |
| 0.6595        | 3.7647 | 48   | 0.7271          | 0.8580 |


### Framework versions

- PEFT 0.11.1
- Transformers 4.44.0
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1