File size: 6,542 Bytes
ddd178f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from typing import Optional, Sequence, Tuple, Union
import torch
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutput, CausalLMOutputWithPast
from xlstm.components.init import small_init_init_
from xlstm.utils import WeightDecayOptimGroupMixin
from xlstm.xlstm_block_stack import xLSTMBlockStack as _xLSTMBlockStack
from .configuration_xlstm import xLSTMConfig
class xLSTMPreTrainedModel(PreTrainedModel):
"""Base class for all models."""
config_class = xLSTMConfig
class xLSTMBlockStack(_xLSTMBlockStack):
"""Small wrapper to expose hidden states"""
def forward(
self, x: torch.Tensor, **kwargs
) -> Tuple[torch.Tensor, Sequence[torch.Tensor]]:
hidden_states = ()
for block in self.blocks:
x = block(x, **kwargs)
hidden_states += (x,)
return x, hidden_states
class xLSTMModel(xLSTMPreTrainedModel):
def __init__(self, config: xLSTMConfig):
super().__init__(config)
self.config = config
self.token_embedding = nn.Embedding(
num_embeddings=config.vocab_size, embedding_dim=config.embedding_dim
)
_config = config.to_xlstm_config()
self.emb_dropout = (
nn.Dropout(_config.dropout)
if _config.add_embedding_dropout
else nn.Identity()
)
self.xlstm_block_stack = xLSTMBlockStack(config=_config)
def forward(
self,
input_ids: torch.LongTensor,
output_hidden_states: Optional[bool] = None,
return_dict=Optional[bool],
) -> Union[Tuple, BaseModelOutput]:
token_embedding = self.token_embedding(input_ids)
x = self.emb_dropout(token_embedding)
x, hidden_states = self.xlstm_block_stack(x)
if output_hidden_states:
hidden_states = (token_embedding,) + hidden_states
if not return_dict:
return x, hidden_states
return BaseModelOutput(
last_hidden_state=x,
hidden_states=hidden_states if output_hidden_states else None,
)
class xLSTMForCausalLM(xLSTMPreTrainedModel, WeightDecayOptimGroupMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: xLSTMConfig, **kwargs):
super().__init__(config)
self.config = config
self.vocab_size = config.vocab_size
self.model = xLSTMModel(config)
self.lm_head = nn.Linear(
in_features=config.embedding_dim,
out_features=config.vocab_size,
bias=False,
)
self.post_init()
# TODO: Add option for up-projection
def get_input_embeddings(self):
return self.model.token_embedding
def set_input_embeddings(self, value: nn.Module):
self.model.token_embedding = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def reset_parameters(self):
self.model.xlstm_block_stack.reset_parameters()
small_init_init_(
self.get_input_embeddings().weight, dim=self.config.embedding_dim
)
if not self.config.tie_word_embeddings:
small_init_init_(
self.get_output_embeddings().weight, dim=self.config.embedding_dim
)
def forward(
self,
input_ids: torch.Tensor,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output = self.model(
input_ids,
output_hidden_states=output_hidden_states,
)
hidden_state = output[0]
logits = self.lm_head(hidden_state)
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + output[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
hidden_states=output.hidden_states,
)
def step(
self,
idx: torch.Tensor,
state: dict[str, dict[str, tuple[torch.Tensor, ...]]] = None,
**kwargs,
) -> tuple[torch.Tensor, dict[str, dict[str, tuple[torch.Tensor, ...]]]]:
x = self.token_embedding(idx)
x = self.emb_dropout(x)
x, state = self.xlstm_block_stack.step(x, state=state, **kwargs)
logits = self.lm_head(x)
return logits, state
def _create_weight_decay_optim_groups(
self, **kwargs
) -> tuple[Sequence[nn.Parameter], Sequence[nn.Parameter]]:
weight_decay, no_weight_decay = super()._create_weight_decay_optim_groups(
**kwargs
)
# remove token embedding and add it to the correct group, accrording to the config
weight_decay = list(weight_decay)
removed = 0
for idx in range(len(weight_decay)):
if weight_decay[idx - removed] is self.get_input_embeddings().weight:
weight_decay.pop(idx - removed)
removed += 1
weight_decay = tuple(weight_decay)
# TODO: Fix this
# if self.config.weight_decay_on_embedding:
if True:
weight_decay += (self.get_input_embeddings().weight,)
else:
no_weight_decay += (self.get_input_embeddings().weight,)
return weight_decay, no_weight_decay
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = nn.Embedding(
new_num_tokens, self.token_embedding.embedding_dim
)
self.token_embedding = new_embeddings.to(self.device)
return new_embeddings
def tie_weights(self):
self.get_output_embeddings().weight = self.get_input_embeddings().weight
def prepare_inputs_for_generation(
self,
input_ids,
**kwargs,
):
model_inputs = {
"input_ids": input_ids.to(self.device),
}
return model_inputs
|