File size: 3,949 Bytes
d5f0cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: apache-2.0
base_model: hfl/chinese-roberta-wwm-ext-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: robert_bilstm_mega_res-ner-msra-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# robert_bilstm_mega_res-ner-msra-ner

This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0668
- Precision: 0.9473
- Recall: 0.9473
- F1: 0.9473
- Accuracy: 0.9928

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0421        | 1.0   | 1449  | 0.0274          | 0.9225    | 0.9341 | 0.9282 | 0.9923   |
| 0.0077        | 2.0   | 2898  | 0.0355          | 0.9255    | 0.9389 | 0.9321 | 0.9910   |
| 0.0066        | 3.0   | 4347  | 0.0376          | 0.9397    | 0.9384 | 0.9391 | 0.9921   |
| 0.0031        | 4.0   | 5796  | 0.0421          | 0.9385    | 0.9401 | 0.9393 | 0.9926   |
| 0.0071        | 5.0   | 7245  | 0.0446          | 0.9365    | 0.9446 | 0.9406 | 0.9923   |
| 0.0007        | 6.0   | 8694  | 0.0431          | 0.9457    | 0.9398 | 0.9428 | 0.9930   |
| 0.0003        | 7.0   | 10143 | 0.0494          | 0.9412    | 0.9408 | 0.9410 | 0.9926   |
| 0.0013        | 8.0   | 11592 | 0.0584          | 0.9379    | 0.9338 | 0.9358 | 0.9917   |
| 0.0003        | 9.0   | 13041 | 0.0557          | 0.9373    | 0.9422 | 0.9398 | 0.9923   |
| 0.0011        | 10.0  | 14490 | 0.0525          | 0.9395    | 0.9463 | 0.9429 | 0.9926   |
| 0.0           | 11.0  | 15939 | 0.0569          | 0.9379    | 0.9449 | 0.9414 | 0.9924   |
| 0.0001        | 12.0  | 17388 | 0.0586          | 0.9358    | 0.9434 | 0.9396 | 0.9922   |
| 0.0           | 13.0  | 18837 | 0.0601          | 0.9439    | 0.9437 | 0.9438 | 0.9926   |
| 0.0013        | 14.0  | 20286 | 0.0606          | 0.9395    | 0.9454 | 0.9424 | 0.9924   |
| 0.0           | 15.0  | 21735 | 0.0591          | 0.9451    | 0.9495 | 0.9473 | 0.9926   |
| 0.0           | 16.0  | 23184 | 0.0608          | 0.9399    | 0.9490 | 0.9444 | 0.9926   |
| 0.0           | 17.0  | 24633 | 0.0620          | 0.9440    | 0.9454 | 0.9447 | 0.9927   |
| 0.0           | 18.0  | 26082 | 0.0636          | 0.9493    | 0.9454 | 0.9473 | 0.9926   |
| 0.0           | 19.0  | 27531 | 0.0681          | 0.9460    | 0.9451 | 0.9456 | 0.9926   |
| 0.0           | 20.0  | 28980 | 0.0630          | 0.9430    | 0.9430 | 0.9430 | 0.9925   |
| 0.0           | 21.0  | 30429 | 0.0620          | 0.9445    | 0.9463 | 0.9454 | 0.9928   |
| 0.0           | 22.0  | 31878 | 0.0671          | 0.9456    | 0.9446 | 0.9451 | 0.9926   |
| 0.0           | 23.0  | 33327 | 0.0682          | 0.9479    | 0.9451 | 0.9465 | 0.9926   |
| 0.0           | 24.0  | 34776 | 0.0671          | 0.9475    | 0.9466 | 0.9470 | 0.9927   |
| 0.0           | 25.0  | 36225 | 0.0668          | 0.9473    | 0.9473 | 0.9473 | 0.9928   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.4.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3