File size: 22,752 Bytes
2b395f2
 
26a8ea5
 
2b395f2
 
 
 
 
 
 
 
 
 
 
 
26a8ea5
2b395f2
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
 
26a8ea5
 
2b395f2
 
 
 
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8ea5
 
 
2b395f2
 
 
 
 
 
 
26a8ea5
 
2b395f2
 
 
 
26a8ea5
2b395f2
 
 
26a8ea5
 
 
 
2b395f2
 
 
 
 
 
 
 
 
 
 
 
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
 
 
 
 
 
 
 
 
 
 
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
26a8ea5
 
 
 
 
 
 
2b395f2
26a8ea5
 
2b395f2
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8ea5
2b395f2
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
 
 
 
26a8ea5
 
 
 
 
 
 
 
2b395f2
26a8ea5
 
 
 
 
 
 
 
 
 
2b395f2
 
 
 
 
 
26a8ea5
 
2b395f2
 
 
 
 
26a8ea5
2b395f2
26a8ea5
2b395f2
 
26a8ea5
2b395f2
 
 
 
 
 
 
 
 
 
 
 
 
 
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
26a8ea5
2b395f2
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
26a8ea5
 
2b395f2
26a8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b395f2
 
26a8ea5
 
 
 
 
 
 
2b395f2
26a8ea5
2b395f2
 
 
26a8ea5
2b395f2
26a8ea5
 
 
 
 
2b395f2
 
 
26a8ea5
 
 
 
 
 
 
 
2b395f2
26a8ea5
2b395f2
 
 
 
26a8ea5
 
 
2b395f2
 
26a8ea5
 
 
2b395f2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
#!/usr/bin/env python3
"""
FRED ML - Enterprise Economic Analytics Platform
Professional think tank interface for comprehensive economic data analysis
"""

import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import boto3
import json
from datetime import datetime, timedelta
import requests
import os
import sys
from typing import Dict, List, Optional
from pathlib import Path

# Add src to path for analytics modules
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'src'))

# Import analytics modules
try:
    from src.analysis.comprehensive_analytics import ComprehensiveAnalytics
    from src.core.enhanced_fred_client import EnhancedFREDClient
    from config.settings import FRED_API_KEY
    ANALYTICS_AVAILABLE = True
except ImportError:
    ANALYTICS_AVAILABLE = False
    st.warning("Advanced analytics modules not available. Running in basic mode.")

# Page configuration
st.set_page_config(
    page_title="FRED ML - Economic Analytics Platform",
    page_icon="๐Ÿ›๏ธ",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for enterprise styling
st.markdown("""
<style>
    /* Main styling */
    .main-header {
        background: linear-gradient(90deg, #1e3c72 0%, #2a5298 100%);
        padding: 2rem;
        border-radius: 10px;
        margin-bottom: 2rem;
        color: white;
    }
    
    .metric-card {
        background: white;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        border-left: 4px solid #1e3c72;
        margin-bottom: 1rem;
    }
    
    .analysis-section {
        background: #f8f9fa;
        padding: 2rem;
        border-radius: 10px;
        margin: 1rem 0;
        border: 1px solid #e9ecef;
    }
    
    .sidebar .sidebar-content {
        background: #2c3e50;
    }
    
    .stButton > button {
        background: linear-gradient(90deg, #1e3c72 0%, #2a5298 100%);
        color: white;
        border: none;
        border-radius: 5px;
        padding: 0.5rem 1rem;
        font-weight: 600;
    }
    
    .stButton > button:hover {
        background: linear-gradient(90deg, #2a5298 0%, #1e3c72 100%);
        transform: translateY(-2px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
    }
    
    .success-message {
        background: #d4edda;
        color: #155724;
        padding: 1rem;
        border-radius: 5px;
        border: 1px solid #c3e6cb;
        margin: 1rem 0;
    }
    
    .warning-message {
        background: #fff3cd;
        color: #856404;
        padding: 1rem;
        border-radius: 5px;
        border: 1px solid #ffeaa7;
        margin: 1rem 0;
    }
    
    .info-message {
        background: #d1ecf1;
        color: #0c5460;
        padding: 1rem;
        border-radius: 5px;
        border: 1px solid #bee5eb;
        margin: 1rem 0;
    }
    
    .chart-container {
        background: white;
        padding: 1rem;
        border-radius: 10px;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
        margin: 1rem 0;
    }
    
    .tabs-container {
        background: white;
        border-radius: 10px;
        padding: 1rem;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
    }
</style>
""", unsafe_allow_html=True)

# Initialize AWS clients
@st.cache_resource
def init_aws_clients():
    """Initialize AWS clients for S3 and Lambda"""
    try:
        s3_client = boto3.client('s3')
        lambda_client = boto3.client('lambda')
        return s3_client, lambda_client
    except Exception as e:
        st.error(f"Failed to initialize AWS clients: {e}")
        return None, None

# Load configuration
@st.cache_data
def load_config():
    """Load application configuration"""
    return {
        's3_bucket': os.getenv('S3_BUCKET', 'fredmlv1'),
        'lambda_function': os.getenv('LAMBDA_FUNCTION', 'fred-ml-processor'),
        'api_endpoint': os.getenv('API_ENDPOINT', 'http://localhost:8000')
    }

def get_available_reports(s3_client, bucket_name: str) -> List[Dict]:
    """Get list of available reports from S3"""
    try:
        response = s3_client.list_objects_v2(
            Bucket=bucket_name,
            Prefix='reports/'
        )
        
        reports = []
        if 'Contents' in response:
            for obj in response['Contents']:
                if obj['Key'].endswith('.json'):
                    reports.append({
                        'key': obj['Key'],
                        'last_modified': obj['LastModified'],
                        'size': obj['Size']
                    })
        
        return sorted(reports, key=lambda x: x['last_modified'], reverse=True)
    except Exception as e:
        st.error(f"Failed to load reports: {e}")
        return []

def get_report_data(s3_client, bucket_name: str, report_key: str) -> Optional[Dict]:
    """Get report data from S3"""
    try:
        response = s3_client.get_object(Bucket=bucket_name, Key=report_key)
        data = json.loads(response['Body'].read().decode('utf-8'))
        return data
    except Exception as e:
        st.error(f"Failed to load report data: {e}")
        return None

def trigger_lambda_analysis(lambda_client, function_name: str, payload: Dict) -> bool:
    """Trigger Lambda function for analysis"""
    try:
        response = lambda_client.invoke(
            FunctionName=function_name,
            InvocationType='Event',  # Asynchronous
            Payload=json.dumps(payload)
        )
        return response['StatusCode'] == 202
    except Exception as e:
        st.error(f"Failed to trigger analysis: {e}")
        return False

def create_time_series_plot(df: pd.DataFrame, title: str = "Economic Indicators"):
    """Create interactive time series plot"""
    fig = go.Figure()
    
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b']
    
    for i, column in enumerate(df.columns):
        if column != 'Date':
            fig.add_trace(
                go.Scatter(
                    x=df.index,
                    y=df[column],
                    mode='lines',
                    name=column,
                    line=dict(width=2, color=colors[i % len(colors)]),
                    hovertemplate='<b>%{x}</b><br>%{y:.2f}<extra></extra>'
                )
            )
    
    fig.update_layout(
        title=dict(text=title, x=0.5, font=dict(size=20)),
        xaxis_title="Date",
        yaxis_title="Value",
        hovermode='x unified',
        height=500,
        plot_bgcolor='white',
        paper_bgcolor='white',
        font=dict(size=12)
    )
    
    return fig

def create_correlation_heatmap(df: pd.DataFrame):
    """Create correlation heatmap"""
    corr_matrix = df.corr()
    
    fig = px.imshow(
        corr_matrix,
        text_auto=True,
        aspect="auto",
        title="Correlation Matrix",
        color_continuous_scale='RdBu_r',
        center=0
    )
    
    fig.update_layout(
        title=dict(x=0.5, font=dict(size=20)),
        height=500,
        plot_bgcolor='white',
        paper_bgcolor='white'
    )
    
    return fig

def create_forecast_plot(historical_data, forecast_data, title="Forecast"):
    """Create forecast plot with confidence intervals"""
    fig = go.Figure()
    
    # Historical data
    fig.add_trace(go.Scatter(
        x=historical_data.index,
        y=historical_data.values,
        mode='lines',
        name='Historical',
        line=dict(color='#1f77b4', width=2)
    ))
    
    # Forecast
    if 'forecast' in forecast_data:
        forecast_values = forecast_data['forecast']
        forecast_index = pd.date_range(
            start=historical_data.index[-1] + pd.DateOffset(months=3),
            periods=len(forecast_values),
            freq='Q'
        )
        
        fig.add_trace(go.Scatter(
            x=forecast_index,
            y=forecast_values,
            mode='lines',
            name='Forecast',
            line=dict(color='#ff7f0e', width=2, dash='dash')
        ))
        
        # Confidence intervals
        if 'confidence_intervals' in forecast_data:
            ci = forecast_data['confidence_intervals']
            if 'lower' in ci.columns and 'upper' in ci.columns:
                fig.add_trace(go.Scatter(
                    x=forecast_index,
                    y=ci['upper'],
                    mode='lines',
                    name='Upper CI',
                    line=dict(color='rgba(255,127,14,0.3)', width=1),
                    showlegend=False
                ))
                
                fig.add_trace(go.Scatter(
                    x=forecast_index,
                    y=ci['lower'],
                    mode='lines',
                    fill='tonexty',
                    name='Confidence Interval',
                    line=dict(color='rgba(255,127,14,0.3)', width=1)
                ))
    
    fig.update_layout(
        title=dict(text=title, x=0.5, font=dict(size=20)),
        xaxis_title="Date",
        yaxis_title="Value",
        height=500,
        plot_bgcolor='white',
        paper_bgcolor='white'
    )
    
    return fig

def main():
    """Main Streamlit application"""
    
    # Initialize AWS clients
    s3_client, lambda_client = init_aws_clients()
    config = load_config()
    
    # Sidebar
    with st.sidebar:
        st.markdown("""
        <div style="text-align: center; padding: 1rem;">
            <h2>๐Ÿ›๏ธ FRED ML</h2>
            <p style="color: #666; font-size: 0.9rem;">Economic Analytics Platform</p>
        </div>
        """, unsafe_allow_html=True)
        
        st.markdown("---")
        
        # Navigation
        page = st.selectbox(
            "Navigation",
            ["๐Ÿ“Š Executive Dashboard", "๐Ÿ”ฎ Advanced Analytics", "๐Ÿ“ˆ Economic Indicators", "๐Ÿ“‹ Reports & Insights", "โš™๏ธ Configuration"]
        )
    
    if page == "๐Ÿ“Š Executive Dashboard":
        show_executive_dashboard(s3_client, config)
    elif page == "๐Ÿ”ฎ Advanced Analytics":
        show_advanced_analytics_page(config)
    elif page == "๐Ÿ“ˆ Economic Indicators":
        show_indicators_page(s3_client, config)
    elif page == "๐Ÿ“‹ Reports & Insights":
        show_reports_page(s3_client, config)
    elif page == "โš™๏ธ Configuration":
        show_configuration_page(config)

def show_executive_dashboard(s3_client, config):
    """Show executive dashboard with key metrics"""
    st.markdown("""
    <div class="main-header">
        <h1>๐Ÿ“Š Executive Dashboard</h1>
        <p>Comprehensive Economic Analytics & Insights</p>
    </div>
    """, unsafe_allow_html=True)
    
    # Key metrics row
    col1, col2, col3, col4 = st.columns(4)
    
    with col1:
        st.markdown("""
        <div class="metric-card">
            <h3>๐Ÿ“ˆ GDP Growth</h3>
            <h2>2.1%</h2>
            <p>Q4 2024</p>
        </div>
        """, unsafe_allow_html=True)
    
    with col2:
        st.markdown("""
        <div class="metric-card">
            <h3>๐Ÿญ Industrial Production</h3>
            <h2>+0.8%</h2>
            <p>Monthly Change</p>
        </div>
        """, unsafe_allow_html=True)
    
    with col3:
        st.markdown("""
        <div class="metric-card">
            <h3>๐Ÿ’ฐ Inflation Rate</h3>
            <h2>3.2%</h2>
            <p>Annual Rate</p>
        </div>
        """, unsafe_allow_html=True)
    
    with col4:
        st.markdown("""
        <div class="metric-card">
            <h3>๐Ÿ’ผ Unemployment</h3>
            <h2>3.7%</h2>
            <p>Current Rate</p>
        </div>
        """, unsafe_allow_html=True)
    
    # Recent analysis section
    st.markdown("""
    <div class="analysis-section">
        <h3>๐Ÿ“Š Recent Analysis</h3>
    </div>
    """, unsafe_allow_html=True)
    
    # Get latest report
    reports = get_available_reports(s3_client, config['s3_bucket'])
    
    if reports:
        latest_report = reports[0]
        report_data = get_report_data(s3_client, config['s3_bucket'], latest_report['key'])
        
        if report_data:
            # Show latest data visualization
            if 'data' in report_data and report_data['data']:
                df = pd.DataFrame(report_data['data'])
                df['Date'] = pd.to_datetime(df['Date'])
                df.set_index('Date', inplace=True)
                
                col1, col2 = st.columns(2)
                
                with col1:
                    st.markdown("""
                    <div class="chart-container">
                        <h4>Economic Indicators Trend</h4>
                    </div>
                    """, unsafe_allow_html=True)
                    fig = create_time_series_plot(df)
                    st.plotly_chart(fig, use_container_width=True)
                
                with col2:
                    st.markdown("""
                    <div class="chart-container">
                        <h4>Correlation Analysis</h4>
                    </div>
                    """, unsafe_allow_html=True)
                    corr_fig = create_correlation_heatmap(df)
                    st.plotly_chart(corr_fig, use_container_width=True)
        else:
            st.warning("No report data available")
    else:
        st.info("No reports available. Run an analysis to generate reports.")

def show_advanced_analytics_page(config):
    """Show advanced analytics page with comprehensive analysis capabilities"""
    st.markdown("""
    <div class="main-header">
        <h1>๐Ÿ”ฎ Advanced Analytics</h1>
        <p>Comprehensive Economic Modeling & Forecasting</p>
    </div>
    """, unsafe_allow_html=True)
    
    if not ANALYTICS_AVAILABLE:
        st.error("Advanced analytics modules not available. Please install required dependencies.")
        return
    
    # Analysis configuration
    st.markdown("""
    <div class="analysis-section">
        <h3>๐Ÿ“‹ Analysis Configuration</h3>
    </div>
    """, unsafe_allow_html=True)
    
    col1, col2 = st.columns(2)
    
    with col1:
        # Economic indicators selection
        indicators = [
            "GDPC1", "INDPRO", "RSAFS", "CPIAUCSL", "FEDFUNDS", "DGS10",
            "TCU", "PAYEMS", "PCE", "M2SL", "DEXUSEU", "UNRATE"
        ]
        
        selected_indicators = st.multiselect(
            "Select Economic Indicators",
            indicators,
            default=["GDPC1", "INDPRO", "RSAFS"]
        )
        
        # Date range
        end_date = datetime.now()
        start_date = end_date - timedelta(days=365*5)  # 5 years
        
        start_date_input = st.date_input(
            "Start Date",
            value=start_date,
            max_value=end_date
        )
        
        end_date_input = st.date_input(
            "End Date",
            value=end_date,
            max_value=end_date
        )
    
    with col2:
        # Analysis options
        forecast_periods = st.slider(
            "Forecast Periods",
            min_value=1,
            max_value=12,
            value=4,
            help="Number of periods to forecast"
        )
        
        include_visualizations = st.checkbox(
            "Generate Visualizations",
            value=True,
            help="Create charts and graphs"
        )
        
        analysis_type = st.selectbox(
            "Analysis Type",
            ["Comprehensive", "Forecasting Only", "Segmentation Only", "Statistical Only"],
            help="Type of analysis to perform"
        )
    
    # Run analysis button
    if st.button("๐Ÿš€ Run Advanced Analysis", type="primary"):
        if not selected_indicators:
            st.error("Please select at least one economic indicator.")
            return
        
        if not FRED_API_KEY:
            st.error("FRED API key not configured. Please set FRED_API_KEY environment variable.")
            return
        
        # Show progress
        with st.spinner("Running comprehensive analysis..."):
            try:
                # Initialize analytics
                analytics = ComprehensiveAnalytics(FRED_API_KEY, output_dir="data/exports/streamlit")
                
                # Run analysis
                results = analytics.run_complete_analysis(
                    indicators=selected_indicators,
                    start_date=start_date_input.strftime('%Y-%m-%d'),
                    end_date=end_date_input.strftime('%Y-%m-%d'),
                    forecast_periods=forecast_periods,
                    include_visualizations=include_visualizations
                )
                
                st.success("โœ… Analysis completed successfully!")
                
                # Display results
                display_analysis_results(results)
                
            except Exception as e:
                st.error(f"โŒ Analysis failed: {e}")

def display_analysis_results(results):
    """Display comprehensive analysis results"""
    st.markdown("""
    <div class="analysis-section">
        <h3>๐Ÿ“Š Analysis Results</h3>
    </div>
    """, unsafe_allow_html=True)
    
    # Create tabs for different result types
    tab1, tab2, tab3, tab4 = st.tabs(["๐Ÿ”ฎ Forecasting", "๐ŸŽฏ Segmentation", "๐Ÿ“ˆ Statistical", "๐Ÿ’ก Insights"])
    
    with tab1:
        if 'forecasting' in results:
            st.subheader("Forecasting Results")
            forecasting_results = results['forecasting']
            
            for indicator, result in forecasting_results.items():
                if 'error' not in result:
                    backtest = result.get('backtest', {})
                    if 'error' not in backtest:
                        mape = backtest.get('mape', 0)
                        rmse = backtest.get('rmse', 0)
                        
                        col1, col2 = st.columns(2)
                        with col1:
                            st.metric(f"{indicator} MAPE", f"{mape:.2f}%")
                        with col2:
                            st.metric(f"{indicator} RMSE", f"{rmse:.4f}")
    
    with tab2:
        if 'segmentation' in results:
            st.subheader("Segmentation Results")
            segmentation_results = results['segmentation']
            
            if 'time_period_clusters' in segmentation_results:
                time_clusters = segmentation_results['time_period_clusters']
                if 'error' not in time_clusters:
                    n_clusters = time_clusters.get('n_clusters', 0)
                    st.info(f"Time periods clustered into {n_clusters} economic regimes")
            
            if 'series_clusters' in segmentation_results:
                series_clusters = segmentation_results['series_clusters']
                if 'error' not in series_clusters:
                    n_clusters = series_clusters.get('n_clusters', 0)
                    st.info(f"Economic series clustered into {n_clusters} groups")
    
    with tab3:
        if 'statistical_modeling' in results:
            st.subheader("Statistical Analysis Results")
            stat_results = results['statistical_modeling']
            
            if 'correlation' in stat_results:
                corr_results = stat_results['correlation']
                significant_correlations = corr_results.get('significant_correlations', [])
                st.info(f"Found {len(significant_correlations)} significant correlations")
    
    with tab4:
        if 'insights' in results:
            st.subheader("Key Insights")
            insights = results['insights']
            
            for finding in insights.get('key_findings', []):
                st.write(f"โ€ข {finding}")

def show_indicators_page(s3_client, config):
    """Show economic indicators page"""
    st.markdown("""
    <div class="main-header">
        <h1>๐Ÿ“ˆ Economic Indicators</h1>
        <p>Real-time Economic Data & Analysis</p>
    </div>
    """, unsafe_allow_html=True)
    
    # Indicators overview
    indicators_info = {
        "GDPC1": {"name": "Real GDP", "description": "Real Gross Domestic Product", "frequency": "Quarterly"},
        "INDPRO": {"name": "Industrial Production", "description": "Industrial Production Index", "frequency": "Monthly"},
        "RSAFS": {"name": "Retail Sales", "description": "Retail Sales", "frequency": "Monthly"},
        "CPIAUCSL": {"name": "Consumer Price Index", "description": "Inflation measure", "frequency": "Monthly"},
        "FEDFUNDS": {"name": "Federal Funds Rate", "description": "Target interest rate", "frequency": "Daily"},
        "DGS10": {"name": "10-Year Treasury", "description": "Government bond yield", "frequency": "Daily"}
    }
    
    # Display indicators in cards
    cols = st.columns(3)
    for i, (code, info) in enumerate(indicators_info.items()):
        with cols[i % 3]:
            st.markdown(f"""
            <div class="metric-card">
                <h3>{info['name']}</h3>
                <p><strong>Code:</strong> {code}</p>
                <p><strong>Frequency:</strong> {info['frequency']}</p>
                <p>{info['description']}</p>
            </div>
            """, unsafe_allow_html=True)

def show_reports_page(s3_client, config):
    """Show reports and insights page"""
    st.markdown("""
    <div class="main-header">
        <h1>๐Ÿ“‹ Reports & Insights</h1>
        <p>Comprehensive Analysis Reports</p>
    </div>
    """, unsafe_allow_html=True)
    
    # Get available reports
    reports = get_available_reports(s3_client, config['s3_bucket'])
    
    if reports:
        st.subheader("Available Reports")
        
        for report in reports[:5]:  # Show last 5 reports
            with st.expander(f"Report: {report['key']} - {report['last_modified'].strftime('%Y-%m-%d %H:%M')}"):
                report_data = get_report_data(s3_client, config['s3_bucket'], report['key'])
                if report_data:
                    st.json(report_data)
    else:
        st.info("No reports available. Run an analysis to generate reports.")

def show_configuration_page(config):
    """Show configuration page"""
    st.markdown("""
    <div class="main-header">
        <h1>โš™๏ธ Configuration</h1>
        <p>System Settings & Configuration</p>
    </div>
    """, unsafe_allow_html=True)
    
    st.subheader("System Configuration")
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.write("**AWS Configuration**")
        st.write(f"S3 Bucket: {config['s3_bucket']}")
        st.write(f"Lambda Function: {config['lambda_function']}")
    
    with col2:
        st.write("**API Configuration**")
        st.write(f"API Endpoint: {config['api_endpoint']}")
        st.write(f"Analytics Available: {ANALYTICS_AVAILABLE}")

if __name__ == "__main__":
    main()