|
<div align="center"> |
|
|
|
|
|
# Parallel Scaling Law for Language Model |
|
|
|
|
|
_Yet Another Scaling Law beyond Parameters and Inference Time Scaling_ |
|
|
|
[](https://arxiv.org/abs/2505.10475) |
|
[](https://huggingface.co/ParScale) |
|
[](https://github.com/QwenLM/ParScale/) |
|
|
|
</div> |
|
|
|
## Checkpoints |
|
|
|
> [!IMPORTANT] |
|
> All the released checkpoints were trained on public datasets and are for academic use only. |
|
|
|
β¨ are our recommendation for strong models. |
|
|
|
### Base models for scaling training data to 1T tokens |
|
|
|
These models demonstrate strong competitiveness among existing small models, including SmolLM, gemma, and Llama-3.2 (see Table 4 for details). |
|
|
|
|Model|Description|Download| |
|
|:-:|:-:|:-:| |
|
|ParScale-1.8B-P1|β¨ Baseline $P=1$|[π€ ParScale/ParScale-1.8B-P1](https://huggingface.co/ParScale/ParScale-1.8B-P1)| |
|
|ParScale-1.8B-P2|β¨ ParScale $P=2$|[π€ ParScale/ParScale-1.8B-P2](https://huggingface.co/ParScale/ParScale-1.8B-P2)| |
|
|ParScale-1.8B-P4|β¨ ParScale $P=4$|[π€ ParScale/ParScale-1.8B-P4](https://huggingface.co/ParScale/ParScale-1.8B-P4)| |
|
|ParScale-1.8B-P8|β¨ ParScale $P=8$|[π€ ParScale/ParScale-1.8B-P8](https://huggingface.co/ParScale/ParScale-1.8B-P8)| |
|
|
|
### Instruct models for scaling training data to 1T tokens |
|
|
|
We post-trained the aforementioned base model on SmolTalk-1M to enable conversational capabilities. |
|
|
|
|Model|Description|Download| |
|
|:-:|:-:|:-:| |
|
|ParScale-1.8B-P1-Inst|β¨ Baseline $P=1$|[π€ ParScale/ParScale-1.8B-P1-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P1-Inst)| |
|
|ParScale-1.8B-P2-Inst|β¨ ParScale $P=2$|[π€ ParScale/ParScale-1.8B-P2-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P2-Inst)| |
|
|ParScale-1.8B-P4-Inst|β¨ ParScale $P=4$|[π€ ParScale/ParScale-1.8B-P4-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P4-Inst)| |
|
|ParScale-1.8B-P8-Inst|β¨ ParScale $P=8$|[π€ ParScale/ParScale-1.8B-P8-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P8-Inst)| |
|
|
|
|
|
### Continual Pretraining Qwen-2.5-3B |
|
|
|
We froze the parameters of Qwen-2.5-3B and only fine-tuned the newly introduced parameters on Stack-V2-Python. Since the following models share the same backbone parameters as Qwen-2.5-3B, they have the potential for dynamic parscale: switching P to adapt model capabilities during inference. |
|
|
|
|Model|Description|Download| |
|
|:-:|:-:|:-:| |
|
|ParScale-Qwen-3B-P2-Python|β¨ ParScale $P=2$|[π€ ParScale/ParScale-Qwen-3B-P2-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P2-Python)| |
|
|ParScale-Qwen-3B-P4-Python|β¨ ParScale $P=4$|[π€ ParScale/ParScale-Qwen-3B-P4-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P4-Python)| |
|
|ParScale-Qwen-3B-P8-Python|β¨ ParScale $P=8$|[π€ ParScale/ParScale-Qwen-3B-P8-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P8-Python)| |
|
|
|
- For full pretraining on Stack-V2-Python |
|
|
|
|Model|Description|Download| |
|
|:-:|:-:|:-:| |
|
|ParScale-QwenInit-3B-P1-Python|Baseline $P=1$|[π€ ParScale/ParScale-QwenInit-3B-P1-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Python)| |
|
|ParScale-QwenInit-3B-P2-Python|ParScale $P=2$|[π€ ParScale/ParScale-QwenInit-3B-P2-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Python)| |
|
|ParScale-QwenInit-3B-P4-Python|ParScale $P=4$|[π€ ParScale/ParScale-QwenInit-3B-P4-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Python)| |
|
|ParScale-QwenInit-3B-P8-Python|ParScale $P=8$|[π€ ParScale/ParScale-QwenInit-3B-P8-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Python)| |
|
|
|
- For full pretraining on Pile |
|
|
|
|Model|Description|Download| |
|
|:-:|:-:|:-:| |
|
|ParScale-QwenInit-3B-P1-Pile|Baseline $P=1$|[π€ ParScale/ParScale-QwenInit-3B-P1-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Pile)| |
|
|ParScale-QwenInit-3B-P2-Pile|ParScale $P=2$|[π€ ParScale/ParScale-QwenInit-3B-P2-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Pile)| |
|
|ParScale-QwenInit-3B-P4-Pile|ParScale $P=4$|[π€ ParScale/ParScale-QwenInit-3B-P4-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Pile)| |
|
|ParScale-QwenInit-3B-P8-Pile|ParScale $P=8$|[π€ ParScale/ParScale-QwenInit-3B-P8-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Pile)| |
|
|
|
|
|
### Checkpoints Used to Fit the Scaling Law |
|
|
|
Download link: https://huggingface.co/ParScale/ParScale-{size}-{P}-{dataset} |
|
|
|
- {size}: model size, from {0.7B, 0.9B, 1.3B, 1.8B, 3B, 4.7B} |
|
- {P}: number of parallels, from {P1, P2, P4, P8} |
|
- {dataset}: training dataset, from {Python, Pile} |
|
|