File size: 4,649 Bytes
9bf13b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
<div align="center">
# Parallel Scaling Law for Language Model
_Yet Another Scaling Law beyond Parameters and Inference Time Scaling_
[](https://arxiv.org/abs/2505.10475)
[](https://huggingface.co/ParScale)
[](https://github.com/QwenLM/ParScale/)
</div>
## Checkpoints
> [!IMPORTANT]
> All the released checkpoints were trained on public datasets and are for academic use only.
β¨ are our recommendation for strong models.
### Base models for scaling training data to 1T tokens
These models demonstrate strong competitiveness among existing small models, including SmolLM, gemma, and Llama-3.2 (see Table 4 for details).
|Model|Description|Download|
|:-:|:-:|:-:|
|ParScale-1.8B-P1|β¨ Baseline $P=1$|[π€ ParScale/ParScale-1.8B-P1](https://huggingface.co/ParScale/ParScale-1.8B-P1)|
|ParScale-1.8B-P2|β¨ ParScale $P=2$|[π€ ParScale/ParScale-1.8B-P2](https://huggingface.co/ParScale/ParScale-1.8B-P2)|
|ParScale-1.8B-P4|β¨ ParScale $P=4$|[π€ ParScale/ParScale-1.8B-P4](https://huggingface.co/ParScale/ParScale-1.8B-P4)|
|ParScale-1.8B-P8|β¨ ParScale $P=8$|[π€ ParScale/ParScale-1.8B-P8](https://huggingface.co/ParScale/ParScale-1.8B-P8)|
### Instruct models for scaling training data to 1T tokens
We post-trained the aforementioned base model on SmolTalk-1M to enable conversational capabilities.
|Model|Description|Download|
|:-:|:-:|:-:|
|ParScale-1.8B-P1-Inst|β¨ Baseline $P=1$|[π€ ParScale/ParScale-1.8B-P1-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P1-Inst)|
|ParScale-1.8B-P2-Inst|β¨ ParScale $P=2$|[π€ ParScale/ParScale-1.8B-P2-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P2-Inst)|
|ParScale-1.8B-P4-Inst|β¨ ParScale $P=4$|[π€ ParScale/ParScale-1.8B-P4-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P4-Inst)|
|ParScale-1.8B-P8-Inst|β¨ ParScale $P=8$|[π€ ParScale/ParScale-1.8B-P8-Inst](https://huggingface.co/ParScale/ParScale-1.8B-P8-Inst)|
### Continual Pretraining Qwen-2.5-3B
We froze the parameters of Qwen-2.5-3B and only fine-tuned the newly introduced parameters on Stack-V2-Python. Since the following models share the same backbone parameters as Qwen-2.5-3B, they have the potential for dynamic parscale: switching P to adapt model capabilities during inference.
|Model|Description|Download|
|:-:|:-:|:-:|
|ParScale-Qwen-3B-P2-Python|β¨ ParScale $P=2$|[π€ ParScale/ParScale-Qwen-3B-P2-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P2-Python)|
|ParScale-Qwen-3B-P4-Python|β¨ ParScale $P=4$|[π€ ParScale/ParScale-Qwen-3B-P4-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P4-Python)|
|ParScale-Qwen-3B-P8-Python|β¨ ParScale $P=8$|[π€ ParScale/ParScale-Qwen-3B-P8-Python](https://huggingface.co/ParScale/ParScale-Qwen-3B-P8-Python)|
- For full pretraining on Stack-V2-Python
|Model|Description|Download|
|:-:|:-:|:-:|
|ParScale-QwenInit-3B-P1-Python|Baseline $P=1$|[π€ ParScale/ParScale-QwenInit-3B-P1-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Python)|
|ParScale-QwenInit-3B-P2-Python|ParScale $P=2$|[π€ ParScale/ParScale-QwenInit-3B-P2-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Python)|
|ParScale-QwenInit-3B-P4-Python|ParScale $P=4$|[π€ ParScale/ParScale-QwenInit-3B-P4-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Python)|
|ParScale-QwenInit-3B-P8-Python|ParScale $P=8$|[π€ ParScale/ParScale-QwenInit-3B-P8-Python](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Python)|
- For full pretraining on Pile
|Model|Description|Download|
|:-:|:-:|:-:|
|ParScale-QwenInit-3B-P1-Pile|Baseline $P=1$|[π€ ParScale/ParScale-QwenInit-3B-P1-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P1-Pile)|
|ParScale-QwenInit-3B-P2-Pile|ParScale $P=2$|[π€ ParScale/ParScale-QwenInit-3B-P2-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P2-Pile)|
|ParScale-QwenInit-3B-P4-Pile|ParScale $P=4$|[π€ ParScale/ParScale-QwenInit-3B-P4-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P4-Pile)|
|ParScale-QwenInit-3B-P8-Pile|ParScale $P=8$|[π€ ParScale/ParScale-QwenInit-3B-P8-Pile](https://huggingface.co/ParScale/ParScale-QwenInit-3B-P8-Pile)|
### Checkpoints Used to Fit the Scaling Law
Download link: https://huggingface.co/ParScale/ParScale-{size}-{P}-{dataset}
- {size}: model size, from {0.7B, 0.9B, 1.3B, 1.8B, 3B, 4.7B}
- {P}: number of parallels, from {P1, P2, P4, P8}
- {dataset}: training dataset, from {Python, Pile}
|