File size: 30,256 Bytes
5cfa310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import inspect
from typing import Callable, Dict, List, Optional, Set, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from fairseq import utils
from fairseq.models.transformer import *
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.quant_noise import quant_noise
from transformers.models.roberta.modeling_roberta import (
    RobertaEncoder,
    RobertaConfig,
    RobertaModel,
    RobertaLMHead,
    RobertaForMaskedLM,
    RobertaLayer
)

# from .multihead_linear_attention import MultiheadLinearAttention


class LinformerTransformerEncoderLayer(RobertaLayer):
    """
    Implements a Linformer Encoder Layer used in BERT/XLM style pre-trained
    models.
    """

    def __init__(self, config, shared_compress_layer):
        # wrap in a list so it's not automatically registered by PyTorch
        self.shared_compress_layer = [shared_compress_layer]
        d_model=config.embed_dim
        nhead=config.num_heads
        dim_feedforward=config.dim_feedforward
        dropout=config.dropout
        activation=config.activation 
        layer_norm_eps=config.layer_norm_eps
        
        super().__init__(config)
        self.attention = self.build_self_attention(config.embed_dim, config)
        self.attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-5)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-5)
        self.output = RobertaOutput(config)

    def build_self_attention(self, embed_dim, args):

        attn = MultiheadLinearAttention(
            embed_dim,
            args.encoder_attention_heads,
            dropout=args.dropout,
            self_attention=True,
            q_noise=args.quant_noise_pq,
            qn_block_size=args.quant_noise_pq_block_size,
            compressed=args.compressed,
            max_seq_len=args.max_positions,
            shared_kv_compressed=args.shared_kv_compressed,
            shared_compress_layer=self.shared_compress_layer[0],
            freeze_compress=args.freeze_compress,
        ) 
        return attn

    def feed_forward_chunk(self, attention_output):
        residual = attention_output
        x = self.intermediate(attention_output)
        layer_output = self.output(x, residual)
        return layer_output

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:

        residual = hidden_states
 
        if self.attn_layer_norm is not None:
            hidden_states = self.attn_layer_norm(hidden_states)

        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
                    " by setting `config.add_cross_attention=True`"
                )

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value
      
        attention_output = attention_output + residual
        residual = attention_output
        attention_output = self.final_layer_norm(attention_output)
        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        layer_output = layer_output + residual

        outputs = (layer_output,) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)
        
        return outputs


class RobertaOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        return hidden_states


class LinformerTransformerEncoder(RobertaEncoder):
    """
    Implementation for a Bi-directional Linformer based Sentence Encoder used
    in BERT/XLM style pre-trained models.

    This first computes the token embedding using the token embedding matrix,
    position embeddings (if specified) and segment embeddings
    (if specified). After applying the specified number of
    LinformerEncoderLayers, it outputs all the internal states of the
    encoder as well as the final representation associated with the first
    token (usually CLS token).

    Input:
        - tokens: B x T matrix representing sentences
        - segment_labels: B x T matrix representing segment label for tokens

    Output:
        - a tuple of the following:
            - a list of internal model states used to compute the
              predictions where each tensor has shape T x B x C
            - sentence representation associated with first input token
              in format B x C.
    """

    def __init__(self, config,**kwargs):
        compress_layer = None
        if config.shared_layer_kv_compressed == 1 and compress_layer is None:
            compress_layer = nn.Linear(
                config.max_positions,
                config.max_positions // config.compressed
            )
            # intialize parameters for compressed layer
            nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2))
            if config.freeze_compress == 1:
                compress_layer.weight.requires_grad = False
            compress_layer = compress_layer
        #encoder_layer = LinformerTransformerEncoderLayer(config, compress_layer)
       
        super().__init__(config)
        
        self.layer = nn.ModuleList([LinformerTransformerEncoderLayer(config, compress_layer) for _ in range(config.num_layers)])
        self.compress_layer = compress_layer
        self.layer_norm = nn.LayerNorm(config.embed_dim)


@with_incremental_state
class MultiheadLinearAttention(nn.Module):
    def __init__(
        self,
        embed_dim,
        num_heads,
        kdim=None,
        vdim=None,
        dropout=0.0,
        bias=True,
        add_bias_kv=False,
        add_zero_attn=False,
        self_attention=False,
        encoder_decoder_attention=False,
        q_noise=0.0,
        qn_block_size=8,
        compressed=1,
        max_seq_len=256,
        shared_kv_compressed=0,
        shared_compress_layer=None,
        freeze_compress=0,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert (
            self.head_dim * num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim ** -0.5

        self.self_attention = self_attention
        self.encoder_decoder_attention = encoder_decoder_attention
        assert not self.self_attention or self.qkv_same_dim, (
            "Self-attention requires query, key and " "value to be of the same size"
        )

        self.k_proj = quant_noise(
            nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
        )
        self.v_proj = quant_noise(
            nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
        )
        self.q_proj = quant_noise(
            nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
        )

        # used for compress sequence to subsequence
        if shared_compress_layer is None:
            self.compress_seq_len = max_seq_len // compressed
            self.compress_k = nn.Linear(max_seq_len, self.compress_seq_len, bias=False)
            if shared_kv_compressed == 0:
                self.compress_v = nn.Linear(
                    max_seq_len, self.compress_seq_len, bias=False
                )
            self.layerwise_sharing = False
        else:
            self.compress_k = shared_compress_layer
            if shared_kv_compressed == 0:
                self.compress_v = shared_compress_layer
            self.layerwise_sharing = True
        self.shared_kv_compressed = shared_kv_compressed

        self.out_proj = quant_noise(
            nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size)

        if add_bias_kv:
            self.bias_k = nn.Parameter(torch.Tensor(1, 1, embed_dim))
            self.bias_v = nn.Parameter(torch.Tensor(1, 1, embed_dim))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn

        self.reset_parameters()

        if freeze_compress == 1:
            self.compress_k.weight.requires_grad = False
            if shared_kv_compressed == 0:
                self.compress_v.weight.requires_grad = False

        self.onnx_trace = False
    def reset_parameters(self):
        if self.qkv_same_dim:
            # Empirically observed the convergence to be much better with
            # the scaled initialization
            nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
            if (
                not self.layerwise_sharing
            ):  # otherwise, we already initialize the parameters
                nn.init.xavier_uniform_(self.compress_k.weight, gain=1 / math.sqrt(2))
                if self.shared_kv_compressed == 0:
                    nn.init.xavier_uniform_(
                        self.compress_v.weight, gain=1 / math.sqrt(2)
                    )
        else:
            nn.init.xavier_uniform_(self.k_proj.weight)
            nn.init.xavier_uniform_(self.v_proj.weight)
            nn.init.xavier_uniform_(self.q_proj.weight)
            if (
                not self.layerwise_sharing
            ):  # otherwise, we already initialize the parameters
                nn.init.xavier_uniform_(self.compress_k.weight)
                if self.shared_kv_compressed == 0:
                    nn.init.xavier_uniform_(self.compress_v.weight)

        nn.init.xavier_uniform_(self.out_proj.weight)
        if self.out_proj.bias is not None:
            nn.init.constant_(self.out_proj.bias, 0.0)
        if self.bias_k is not None:
            nn.init.xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            nn.init.xavier_normal_(self.bias_v)

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    def forward(
        self,
        query,
        key: Optional[torch.Tensor],
        value: Optional[torch.Tensor],
        key_padding_mask: Optional[torch.Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[torch.Tensor]]]] = None,
        output_attentions: bool = True,
        need_weights: bool = True,
        static_kv: bool = False,
        attn_mask: Optional[torch.Tensor] = None,
        before_softmax: bool = False,
        need_head_weights: bool = False,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        """Input shape: Time x Batch x Channel

        Args:
            key_padding_mask (ByteTensor, optional): mask to exclude
                keys that are pads, of shape `(batch, src_len)`, where
                padding elements are indicated by 1s.
            need_weights (bool, optional): return the attention weights,
                averaged over heads (default: False).
            attn_mask (ByteTensor, optional): typically used to
                implement causal attention, where the mask prevents the
                attention from looking forward in time (default: None).
            before_softmax (bool, optional): return the raw attention
                weights and values before the attention softmax.
            need_head_weights (bool, optional): return the attention
                weights for each head. Implies *need_weights*. Default:
                return the average attention weights over all heads.
        """
        
        if need_head_weights:
            need_weights = True

        tgt_len, bsz, embed_dim = query.size()
        assert embed_dim == self.embed_dim
        assert list(query.size()) == [tgt_len, bsz, embed_dim]

        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if saved_state is not None and "prev_key" in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None

        if self.self_attention:
            q = self.q_proj(query)

            k_input = query.permute(1, 2, 0).contiguous()  # B * C * T
            k_input = (
                F.linear(k_input, self.compress_k.weight[:, 0:tgt_len])
                .permute(2, 0, 1)
                .contiguous()
            )
            k = self.k_proj(k_input)

            v_input = query.permute(1, 2, 0).contiguous()  # B * C * T
            if self.shared_kv_compressed == 0:
                v_input = (
                    F.linear(v_input, self.compress_v.weight[:, 0:tgt_len])
                    .permute(2, 0, 1)
                    .contiguous()
                )
            if self.shared_kv_compressed == 1:  # use shared kv compressed linear layer
                v_input = (
                    F.linear(v_input, self.compress_k.weight[:, 0:tgt_len])
                    .permute(2, 0, 1)
                    .contiguous()
                )
            v = self.v_proj(v_input)
        elif self.encoder_decoder_attention:
            # encoder-decoder attention
            q = self.q_proj(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                k = self.k_proj(key)
                v = self.v_proj(key)

        else:
            assert key is not None and value is not None
            q = self.q_proj(query)
            k = self.k_proj(key)
            v = self.v_proj(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
                )
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [
                        key_padding_mask,
                        key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
                    ],
                    dim=1,
                )

        q = (
            q.contiguous()
            .view(tgt_len, bsz * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )
        if k is not None:
            k = (
                k.contiguous()
                .view(-1, bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )
        if v is not None:
            v = (
                v.contiguous()
                .view(-1, bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if "prev_key" in saved_state:
                _prev_key = saved_state["prev_key"]
                assert _prev_key is not None
                prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    assert k is not None
                    k = torch.cat([prev_key, k], dim=1)
            if "prev_value" in saved_state:
                _prev_value = saved_state["prev_value"]
                assert _prev_value is not None
                prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    v = prev_value
                else:
                    assert v is not None
                    v = torch.cat([prev_value, v], dim=1)
            prev_key_padding_mask: Optional[torch.Tensor] = None
            if "prev_key_padding_mask" in saved_state:
                prev_key_padding_mask = saved_state["prev_key_padding_mask"]
            assert k is not None and v is not None
            key_padding_mask = MultiheadLinearAttention._append_prev_key_padding_mask(
                key_padding_mask=key_padding_mask,
                prev_key_padding_mask=prev_key_padding_mask,
                batch_size=bsz,
                src_len=k.size(1),
                static_kv=static_kv,
            )

            saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_key_padding_mask"] = key_padding_mask
            # In this branch incremental_state is never None
            assert incremental_state is not None
            incremental_state = self._set_input_buffer(incremental_state, saved_state)
        assert k is not None
        src_len = k.size(1)

        if self.add_zero_attn:
            assert v is not None
            src_len += 1
            k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
            v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
                )

        attn_weights = torch.bmm(q, k.transpose(1, 2))
        attn_weights = MultiheadLinearAttention.apply_sparse_mask(
            attn_weights, tgt_len, src_len, bsz
        )

        assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if before_softmax:
            return attn_weights, v

        attn_weights_float = utils.softmax(
            attn_weights, dim=-1, onnx_trace=self.onnx_trace
        )
        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = F.dropout(
            attn_weights,
            p=self.dropout,
            training=self.training,
        )
        assert v is not None
        attn = torch.bmm(attn_probs, v)
        assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
        if self.onnx_trace and attn.size(1) == 1:
            # when ONNX tracing a single decoder step (sequence length == 1)
            # the transpose is a no-op copy before view, thus unnecessary
            attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
        else:
            attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
        attn = self.out_proj(attn)
        attn_weights: Optional[torch.Tensor] = None
        if output_attentions:
            attn_weights = attn_weights_float.view(
                bsz, self.num_heads, tgt_len, src_len
            ).transpose(1, 0)
            if not need_head_weights:
                # average attention weights over heads
                attn_weights = attn_weights.mean(dim=0)


        return attn, attn_weights

    @staticmethod
    def _append_prev_key_padding_mask(
        key_padding_mask: Optional[torch.Tensor],
        prev_key_padding_mask: Optional[torch.Tensor],
        batch_size: int,
        src_len: int,
        static_kv: bool,
    ) -> Optional[torch.Tensor]:
        # saved key padding masks have shape (bsz, seq_len)
        if prev_key_padding_mask is not None and static_kv:
            new_key_padding_mask = prev_key_padding_mask
        elif prev_key_padding_mask is not None and key_padding_mask is not None:
            new_key_padding_mask = torch.cat(
                [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
            )
        # During incremental decoding, as the padding token enters and
        # leaves the frame, there will be a time when prev or current
        # is None
        elif prev_key_padding_mask is not None:
            filler = torch.zeros(
                (batch_size, src_len - prev_key_padding_mask.size(1)),
                device=prev_key_padding_mask.device,
            )
            new_key_padding_mask = torch.cat(
                [prev_key_padding_mask.float(), filler.float()], dim=1
            )
        elif key_padding_mask is not None:
            filler = torch.zeros(
                (batch_size, src_len - key_padding_mask.size(1)),
                device=key_padding_mask.device,
            )
            new_key_padding_mask = torch.cat(
                [filler.float(), key_padding_mask.float()], dim=1
            )
        else:
            new_key_padding_mask = prev_key_padding_mask
        return new_key_padding_mask

    @torch.jit.export
    def reorder_incremental_state(
        self,
        incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]],
        new_order: torch.Tensor,
    ):
        """Reorder buffered internal state (for incremental generation)."""
        input_buffer = self._get_input_buffer(incremental_state)
        if input_buffer is not None:
            for k in input_buffer.keys():
                input_buffer_k = input_buffer[k]
                if input_buffer_k is not None:
                    if self.encoder_decoder_attention and input_buffer_k.size(
                        0
                    ) == new_order.size(0):
                        break
                    input_buffer[k] = input_buffer_k.index_select(0, new_order)
            incremental_state = self._set_input_buffer(incremental_state, input_buffer)
        return incremental_state

    def _get_input_buffer(
        self, incremental_state: Optional[Dict[str, Dict[str, Optional[torch.Tensor]]]]
    ) -> Dict[str, Optional[torch.Tensor]]:
        result = self.get_incremental_state(incremental_state, "attn_state")
        if result is not None:
            return result
        else:
            empty_result: Dict[str, Optional[torch.Tensor]] = {}
            return empty_result

    def _set_input_buffer(
        self,
        incremental_state: Dict[str, Dict[str, Optional[torch.Tensor]]],
        buffer: Dict[str, Optional[torch.Tensor]],
    ):
        return self.set_incremental_state(incremental_state, "attn_state", buffer)

    def apply_sparse_mask(attn_weights, tgt_len: int, src_len: int, bsz: int):
        return attn_weights

    def upgrade_state_dict_named(self, state_dict, name):
        prefix = name + "." if name != "" else ""
        items_to_add = {}
        keys_to_remove = []
        for k in state_dict.keys():
            if k.endswith(prefix + "in_proj_weight"):
                # in_proj_weight used to be q + k + v with same dimensions
                dim = int(state_dict[k].shape[0] / 3)
                items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
                items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
                items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]

                keys_to_remove.append(k)

                k_bias = prefix + "in_proj_bias"
                if k_bias in state_dict.keys():
                    dim = int(state_dict[k].shape[0] / 3)
                    items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
                    items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
                        dim : 2 * dim
                    ]
                    items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]

                    keys_to_remove.append(prefix + "in_proj_bias")

        for k in keys_to_remove:
            del state_dict[k]

        for key, value in items_to_add.items():
            state_dict[key] = value



def apply_chunking_to_forward(
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
) -> torch.Tensor:
    """
    This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
    `chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.

    If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
    applying `forward_fn` to `input_tensors`.

    Args:
        forward_fn (`Callable[..., torch.Tensor]`):
            The forward function of the model.
        chunk_size (`int`):
            The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (`int`):
            The dimension over which the `input_tensors` should be chunked.
        input_tensors (`Tuple[torch.Tensor]`):
            The input tensors of `forward_fn` which will be chunked

    Returns:
        `torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.


    Examples:

    ```python
    # rename the usual forward() fn to forward_chunk()
    def forward_chunk(self, hidden_states):
        hidden_states = self.decoder(hidden_states)
        return hidden_states


    # implement a chunked forward function
    def forward(self, hidden_states):
        return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
    ```"""
    assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"

    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
    if num_args_in_forward_chunk_fn != len(input_tensors):
        raise ValueError(
            f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
            "tensors are given"
        )

    if chunk_size > 0:
        tensor_shape = input_tensors[0].shape[chunk_dim]
        for input_tensor in input_tensors:
            if input_tensor.shape[chunk_dim] != tensor_shape:
                raise ValueError(
                    f"All input tenors have to be of the same shape: {tensor_shape}, "
                    f"found shape {input_tensor.shape[chunk_dim]}"
                )

        if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
            raise ValueError(
                f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
                f"size {chunk_size}"
            )

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)