File size: 21,308 Bytes
acc09a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import LayerNorm
from fairseq.models.roberta import (
    RobertaModel as RobertModel, 
    RobertaEncoder as RobertaEncoderFS
)
from transformers.models.roberta.modeling_roberta import (
    RobertaEncoder,
    RobertaConfig,
    RobertaModel,
    RobertaLMHead,
    RobertaForMaskedLM,
    RobertaEmbeddings,
    RobertaForTokenClassification,
    RobertaForSequenceClassification
)
from transformers.modeling_outputs import (
    MaskedLMOutput,   
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
)

from .linformer import LinformerTransformerEncoderLayer
from .jargon_configuration import JargonConfig


class JargonForSequenceClassification(RobertaForSequenceClassification):

    config_class = JargonConfig
    
    def __init__(self, config,  **kwargs):
        base_model_prefix = "jargon"
        
        super().__init__(config, **kwargs)

        self.roberta = JargonModel(config, add_pooling_layer=False)
        self.sbo_head = self.build_sbo_head(config)

    def build_sbo_head(self, config):
        return SBOHead(
            config,
            embedding_weights=(
                self.roberta.embeddings.word_embeddings.weight
                if not config.untie_weights_roberta
                else None
            )
        )


class JargonForTokenClassification(RobertaForTokenClassification):

    config_class = JargonConfig
    
    def __init__(self, config,  **kwargs):
        base_model_prefix = "jargon"
        
        super().__init__(config, **kwargs)

        self.roberta = JargonModel(config, add_pooling_layer=False)
        self.sbo_head = self.build_sbo_head(config)

    def build_sbo_head(self, config):
        return SBOHead(
            config,
            embedding_weights=(
                self.roberta.embeddings.word_embeddings.weight
                if not config.untie_weights_roberta
                else None
            )
        )
        

class JargonForMaskedLM(RobertaForMaskedLM):

    config_class = JargonConfig
    
    def __init__(self, config,  **kwargs):
        base_model_prefix = "jargon"
        
        super().__init__(config, **kwargs)

        self.roberta = JargonModel(config, add_pooling_layer=False)
        self.sbo_head = self.build_sbo_head(config)

    def build_sbo_head(self, config):
        return SBOHead(
            config,
            embedding_weights=(
                self.roberta.embeddings.word_embeddings.weight
                if not config.untie_weights_roberta
                else None
            )
        )


class JargonForMaskedLMFS(RobertaForMaskedLM):

    def __init__(self, config, dictionary, **kwargs):
        config_class = JargonConfig
        base_model_prefix = "jargon"
        
        super().__init__(config, **kwargs)

        self.roberta = FlaubertEncoder(config, dictionary)

    def build_sbo_head(self, config):
        return SBOHead(
            config,
            embedding_weights=(
                self.roberta.embeddings.word_embeddings.weight
                if not config.untie_weights_roberta
                else None
            )
        )


class JargonEmbeddings(RobertaEmbeddings):

    def __init__(self, config, **kwargs):
        config_class = JargonConfig
        base_model_prefix = "jargon"
        super().__init__(config, **kwargs)
    
    def forward(
        self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
    ):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
        
        embeddings = inputs_embeds + token_type_embeddings
        position_embeddings = self.position_embeddings(position_ids)

        embeddings += position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


class JargonEncoder(RobertaEncoder):

    def __init__(self, args):
        compress_layer = None
        if args.shared_layer_kv_compressed == 1 and compress_layer is None:
            compress_layer = nn.Linear(
                args.max_positions,
                args.max_positions // args.compressed
            )
            # intialize parameters for compressed layer
            nn.init.xavier_uniform_(compress_layer.weight, gain=1 / math.sqrt(2))
            if args.freeze_compress == 1:
                compress_layer.weight.requires_grad = False
            compress_layer = compress_layer

        super().__init__(args)
 
        self.layer = nn.ModuleList([LinformerTransformerEncoderLayer(args, compress_layer) for _ in range(args.num_layers)])
        self.compress_layer = compress_layer

        if args.encoder_normalize_before:
            self.layer_norm = LayerNorm(args.embed_dim)
        else:
            self.layer_norm = None
        
        self.lm_head = None

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:

        x = super().forward(hidden_states=hidden_states,
                            attention_mask=attention_mask,
                            head_mask=head_mask,
                            encoder_hidden_states=encoder_hidden_states,
                            encoder_attention_mask=encoder_attention_mask,
                            past_key_values=past_key_values,
                            use_cache=use_cache,
                            output_attentions=output_attentions,
                            output_hidden_states=output_hidden_states,
                            return_dict=return_dict)
        
 
        if self.layer_norm is not None:
            x.last_hidden_state = self.layer_norm(x.last_hidden_state)
        
        return x

    def build_encoder(self, args, dictionary, embed_tokens):
        encoder = LinformerTransformerEncoder(args)
        return encoder
        if args.use_linformer:
            encoder = LinformerTransformerEncoder(args, dictionary, embed_tokens)
        elif args.use_fft:
            encoder = FourierTransformerEncoder(args, dictionary, embed_tokens)
        else:
            encoder = TransformerEncoder(args, dictionary, embed_tokens)

        encoder.apply(init_bert_params)

        return encoder

    def output_layer(self, features, masked_tokens=None, pairs=None, **unused):
        lm_out = self.lm_head(features, masked_tokens)
        if pairs is not None:
            sbo_out = self.sbo_head(features, pairs)
            return lm_out, sbo_out
        else:
            return lm_out

    
class JargonModel(RobertaModel):
    config_class = JargonConfig
    def __init__(self, config, **kwargs):
        config_class = JargonConfig
        base_model_prefix = "jargon"
        
        super().__init__(config, **kwargs)
        self.embeddings = JargonEmbeddings(config)
        self.encoder = JargonEncoder(config)
    # Copied from modeling_roberta.py
    # Add transpose of embeddings as implemented in fairseq
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        r"""
        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)

        if token_type_ids is None:
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )


        embedding_output = embedding_output.transpose(0,1)
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        sequence_output = encoder_outputs[0].transpose(0,1)

        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        # Fairseq Linformer implementation works with transposed hidden states -> we transpose them back for HF implementation.
        if output_hidden_states:
            encoder_outputs.hidden_states = [h.transpose(0,1) for h in encoder_outputs.hidden_states]

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


class SBOLayer(nn.Module):

    def __init__(self, input_size, hidden_size, activation, export):
        super().__init__()
        self.layer = nn.Linear(input_size, hidden_size)
        self.activ = get_activation_fn(activation)
        self.norm = LayerNorm(hidden_size)

    def forward(self, x):
        return self.norm(self.activ(self.layer(x)))


class SBONetwork(nn.Module):

    def __init__(self, input_size, hidden_size, activation, export):
        super().__init__()
        self.layers = nn.ModuleList([
            self.build_sbo_layer(input_size, hidden_size, activation, export),
            self.build_sbo_layer(hidden_size, hidden_size, activation, export)
        ])
        self.layers = nn.Sequential(*self.layers)

    def build_sbo_layer(self, input_size, output_size, activation, export):
        return SBOLayer(input_size, output_size, activation, export)

    def forward(self, x):
        return self.layers(x)
 

class SBOHead(nn.Module):

    def __init__(self, args, embedding_weights, max_targets=10, position_embedding_size=200):
        super().__init__()

        self.position_embeddings = nn.Embedding(max_targets, position_embedding_size)

        export = getattr(args, "export", False)
        hidden_size = args.embed_dim
        input_size = hidden_size * 2 + position_embedding_size
        activation = getattr(args, "activation_fn", "relu") or "relu"

        self.mlp_layer_norm = self.build_sbo_network(input_size, hidden_size, activation, export)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(
            embedding_weights.size(1),
            embedding_weights.size(0),
            bias=False
        )
        if embedding_weights is not None:
            self.decoder.weight = embedding_weights

        self.bias = nn.Parameter(torch.zeros(embedding_weights.size(0)))
        self.max_targets = max_targets

    def build_sbo_network(self, input_size, hidden_size, activation, export):
        return SBONetwork(input_size, hidden_size, activation, export)

    def forward(self, hidden_states, pairs):
        bs, num_pairs, _ = pairs.size()
        bs, seq_len, dim = hidden_states.size()
        # pair indices: (bs, num_pairs)
        left, right = pairs[:,:, 0], pairs[:, :, 1]
        # (bs, num_pairs, dim)
        left_hidden = torch.gather(hidden_states, 1, left.unsqueeze(2).repeat(1, 1, dim))
        # pair states: bs * num_pairs, max_targets, dim
        left_hidden = left_hidden.contiguous().view(bs * num_pairs, dim).unsqueeze(1).repeat(1, self.max_targets, 1)
        
        right_hidden = torch.gather(hidden_states, 1, right.unsqueeze(2).repeat(1, 1, dim))
        # bs * num_pairs, max_targets, dim
        right_hidden = right_hidden.contiguous().view(bs * num_pairs, dim).unsqueeze(1).repeat(1, self.max_targets, 1)

        # (max_targets, dim)
        position_embeddings = self.position_embeddings.weight
       
        z = torch.cat((left_hidden, right_hidden, position_embeddings.unsqueeze(0).repeat(bs * num_pairs, 1, 1)), -1)
        
        hidden_states = self.mlp_layer_norm(torch.cat((left_hidden, right_hidden, position_embeddings.unsqueeze(0).repeat(bs * num_pairs, 1, 1)), -1))
        # target scores : bs * num_pairs, max_targets, vocab_size
        target_scores = self.decoder(hidden_states) + self.bias
        return target_scores


def get_activation_fn(activation):
    """Returns the activation function corresponding to `activation`"""

    if activation == "relu":
        return F.relu
    elif activation == "relu_squared":
        return F.relu_squared
    elif activation == "gelu":
        return F.gelu
    elif activation == "gelu_fast":
        deprecation_warning(
            "--activation-fn=gelu_fast has been renamed to gelu_accurate"
        )
        return F.gelu_accurate
    elif activation == "gelu_accurate":
        return F.gelu_accurate
    elif activation == "tanh":
        return torch.tanh
    elif activation == "linear":
        return lambda x: x
    elif activation == "swish":
        return torch.nn.SiLU
    else:
        raise RuntimeError("--activation-fn {} not supported".format(activation))


def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: torch.Tensor x:

    Returns: torch.Tensor
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
    return incremental_indices.long() + padding_idx