File size: 3,104 Bytes
f7669c7 1c2b0aa 4b9e154 f7669c7 4b9e154 f7669c7 4b9e154 f7669c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-6front-1body-6rear
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-TEDxJP-6front-1body-6rear
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4394
- Wer: 0.1704
- Mer: 0.1647
- Wil: 0.2508
- Wip: 0.7492
- Hits: 55836
- Substitutions: 6340
- Deletions: 2411
- Insertions: 2256
- Cer: 0.1351
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
| 0.6164 | 1.0 | 1457 | 0.4627 | 0.2224 | 0.2073 | 0.2961 | 0.7039 | 54939 | 6736 | 2912 | 4716 | 0.1954 |
| 0.5064 | 2.0 | 2914 | 0.4222 | 0.1785 | 0.1722 | 0.2591 | 0.7409 | 55427 | 6402 | 2758 | 2370 | 0.1416 |
| 0.4909 | 3.0 | 4371 | 0.4147 | 0.1717 | 0.1664 | 0.2514 | 0.7486 | 55563 | 6218 | 2806 | 2068 | 0.1350 |
| 0.4365 | 4.0 | 5828 | 0.4120 | 0.1722 | 0.1661 | 0.2525 | 0.7475 | 55848 | 6373 | 2366 | 2385 | 0.1380 |
| 0.3954 | 5.0 | 7285 | 0.4145 | 0.1715 | 0.1655 | 0.2517 | 0.7483 | 55861 | 6355 | 2371 | 2351 | 0.1384 |
| 0.3181 | 6.0 | 8742 | 0.4178 | 0.1710 | 0.1650 | 0.2509 | 0.7491 | 55891 | 6326 | 2370 | 2348 | 0.1368 |
| 0.2971 | 7.0 | 10199 | 0.4261 | 0.1698 | 0.1640 | 0.2497 | 0.7503 | 55900 | 6304 | 2383 | 2279 | 0.1348 |
| 0.2754 | 8.0 | 11656 | 0.4299 | 0.1703 | 0.1645 | 0.2504 | 0.7496 | 55875 | 6320 | 2392 | 2288 | 0.1354 |
| 0.2604 | 9.0 | 13113 | 0.4371 | 0.1702 | 0.1644 | 0.2506 | 0.7494 | 55864 | 6343 | 2380 | 2267 | 0.1347 |
| 0.2477 | 10.0 | 14570 | 0.4394 | 0.1704 | 0.1647 | 0.2508 | 0.7492 | 55836 | 6340 | 2411 | 2256 | 0.1351 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.12.1
|