File size: 1,695 Bytes
d33d8f7
7fc82f5
 
d33d8f7
 
 
 
 
 
 
7fc82f5
d33d8f7
 
 
 
 
 
7fc82f5
d33d8f7
7fc82f5
d33d8f7
7fc82f5
 
 
 
 
 
d33d8f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100bb29
 
 
d33d8f7
 
 
 
 
 
 
 
 
7fc82f5
 
d33d8f7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc
base_model: davidmasip/racism
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: racism-finetuned-detests-wandb24
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# racism-finetuned-detests-wandb24

This model is a fine-tuned version of [davidmasip/racism](https://huggingface.co/davidmasip/racism) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3916
- Accuracy: 0.8380
- F1-score: 0.7712
- Precision: 0.7692
- Recall: 0.7733
- Auc: 0.7733

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:|
| 0.357         | 1.0   | 39   | 0.3343          | 0.8576   | 0.7614   | 0.8374    | 0.7277 | 0.7277 |
| 0.1109        | 2.0   | 78   | 0.3916          | 0.8380   | 0.7712   | 0.7692    | 0.7733 | 0.7733 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1