|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: PRAJWAL23/my_awesome_qa_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# PRAJWAL23/my_awesome_qa_model |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 1.7361 |
|
- Validation Loss: 2.1199 |
|
- Epoch: 9 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 3.4974 | 2.4438 | 0 | |
|
| 1.9872 | 2.1199 | 1 | |
|
| 1.7273 | 2.1199 | 2 | |
|
| 1.7258 | 2.1199 | 3 | |
|
| 1.7417 | 2.1199 | 4 | |
|
| 1.7353 | 2.1199 | 5 | |
|
| 1.7250 | 2.1199 | 6 | |
|
| 1.7317 | 2.1199 | 7 | |
|
| 1.7336 | 2.1199 | 8 | |
|
| 1.7361 | 2.1199 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.14.3 |
|
- Tokenizers 0.13.3 |
|
|