File size: 10,607 Bytes
74f9e56 5fc7d91 74f9e56 5fc7d91 b91f429 74f9e56 5fc7d91 4669967 387593d 1549b92 4669967 5fc7d91 1038ddc 5fc7d91 387593d 5fc7d91 c467e8f 5fc7d91 387593d 5fc7d91 387593d 40b208c c467e8f 5fc7d91 40b208c 873764d 40b208c 5fc7d91 387593d 5fc7d91 93e6739 5fc7d91 387593d e7db4dd 5fc7d91 e7db4dd 5fc7d91 93e6739 5fc7d91 e7db4dd 387593d 34426d1 5fc7d91 78e0a0f 5fc7d91 387593d 5fc7d91 94ea1a0 387593d 5fc7d91 bd36086 5fc7d91 bd36086 5fc7d91 bd36086 5fc7d91 93813be 5fc7d91 93813be 5fc7d91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
language:
- pt
tags:
- albertina-pt*
- albertina-ptpt
- albertina-ptbr
- albertina-ptpt-base
- albertina-ptbr-base
- fill-mask
- bert
- deberta
- portuguese
- encoder
- foundation model
license: mit
datasets:
- dlb/plue
- oscar-corpus/OSCAR-2301
- PORTULAN/glue-ptpt
widget:
- text: >-
A culinária brasileira é rica em sabores e [MASK], tornando-se um dos maiores patrimônios do país.
---
---
<img align="left" width="40" height="40" src="https://github.githubassets.com/images/icons/emoji/unicode/1f917.png">
<p style="text-align: center;"> This is the model card for Albertina 100M PTBR.
You may be interested in some of the other models in the <a href="https://huggingface.co/PORTULAN">Albertina (encoders) and Gervásio (decoders) families</a>.
</p>
---
# Albertina 100M PTBR
**Albertina 100M PTBR** is a foundation, large language model for American **Portuguese** from **Brazil**.
It is an **encoder** of the BERT family, based on the neural architecture Transformer and
developed over the DeBERTa model, with most competitive performance for this language.
It is distributed free of charge and under a most permissible license.
| Albertina's Family of Models |
|----------------------------------------------------------------------------------------------------------|
| [**Albertina 1.5B PTPT**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder) |
| [**Albertina 1.5B PTBR**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptbr-encoder) |
| [**Albertina 1.5B PTPT 256**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder-256)|
| [**Albertina 1.5B PTBR 256**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptbr-encoder-256)|
| [**Albertina 900M PTPT**](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptpt-encoder) |
| [**Albertina 900M PTBR**](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptbr-encoder) |
| [**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) |
| [**Albertina 100M PTBR**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptbr-encoder) |
**Albertina 100M PTBR base** is developed by a joint team from the University of Lisbon and the University of Porto, Portugal.
For further details, check the respective [publication](https://arxiv.org/abs/2403.01897):
``` latex
@misc{albertina-pt-fostering,
title={Fostering the Ecosystem of Open Neural Encoders
for Portuguese with Albertina PT-* family},
author={Rodrigo Santos and João Rodrigues and Luís Gomes
and João Silva and António Branco
and Henrique Lopes Cardoso and Tomás Freitas Osório
and Bernardo Leite},
year={2024},
eprint={2403.01897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Please use the above cannonical reference when using or citing this model.
<br>
# Model Description
**This model card is for Albertina 100M PTBR**, with 100M parameters, 12 layers and a hidden size of 768.
Albertina-PT-BR base is distributed under an [MIT license](https://huggingface.co/PORTULAN/albertina-ptpt/blob/main/LICENSE).
DeBERTa is distributed under an [MIT license](https://github.com/microsoft/DeBERTa/blob/master/LICENSE).
<br>
# Training Data
[**Albertina P100M PTBR**](https://huggingface.co/PORTULAN/albertina-ptbr-base) was trained over a 3.7 billion token curated selection of documents from the [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301) data set.
The OSCAR data set includes documents in more than one hundred languages, including Portuguese, and it is widely used in the literature. It is the result of a selection performed over the [Common Crawl](https://commoncrawl.org/) data set, crawled from the Web, that retains only pages whose metadata indicates permission to be crawled, that performs deduplication, and that removes some boilerplate, among other filters.
Given that it does not discriminate between the Portuguese variants, we performed extra filtering by retaining only documents whose meta-data indicate the Internet country code top-level domain of Brazil. We used the January 2023 version of OSCAR, which is based on the November/December 2022 version of Common Crawl.
## Preprocessing
We filtered the PT-BR corpora using the [BLOOM pre-processing](https://github.com/bigscience-workshop/data-preparation) pipeline.
We skipped the default filtering of stopwords since it would disrupt the syntactic structure, and also the filtering for language identification given the corpus was pre-selected as Portuguese.
## Training
As codebase, we resorted to the [DeBERTa V1 base](https://huggingface.co/microsoft/deberta-base), for English.
To train [**Albertina 100M PTBR**](https://huggingface.co/PORTULAN/albertina-ptpt-base), the data set was tokenized with the original DeBERTa tokenizer with a 128 token sequence truncation and dynamic padding.
The model was trained using the maximum available memory capacity resulting in a batch size of 3072 samples (192 samples per GPU).
We opted for a learning rate of 1e-5 with linear decay and 10k warm-up steps.
The model was trained with a total of 150 training epochs resulting in approximately 180k steps.
The model was trained for one day on a2-megagpu-16gb Google Cloud A2 VMs with 16 GPUs, 96 vCPUs and 1.360 GB of RAM.
<br>
# Evaluation
The base model versions was evaluated on downstream tasks, namely the translations into PTBR of the English data sets used for a few of the tasks in the widely-used [GLUE benchmark](https://huggingface.co/datasets/glue).
## GLUE tasks translated
We resort to [PLUE](https://huggingface.co/datasets/dlb/plue) (Portuguese Language Understanding Evaluation), a data set that was obtained by automatically translating GLUE into **PT-BR**.
We address four tasks from those in PLUE, namely:
- two similarity tasks: MRPC, for detecting whether two sentences are paraphrases of each other, and STS-B, for semantic textual similarity;
- and two inference tasks: RTE, for recognizing textual entailment and WNLI, for coreference and natural language inference.
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) |
|------------------------------|----------------|----------------|-----------|-----------------|
| **Albertina 900M PTBR No-brWaC** | **0.7798** | 0.5070 | **0.9167**| 0.8743
| **Albertina 900M PTBR** | 0.7545 | 0.4601 | 0.9071 | **0.8910** |
| **Albertina 100M PTBR** | 0.6462 | **0.5493** | 0.8779 | 0.8501 |
<br>
# How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='PORTULAN/albertina-ptbr-base')
>>> unmasker("A culinária brasileira é rica em sabores e [MASK], tornando-se um dos maiores patrimônios do país.")
[{'score': 0.9391396045684814, 'token': 14690, 'token_str': ' costumes', 'sequence': 'A culinária brasileira é rica em sabores e costumes, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.04568921774625778, 'token': 29829, 'token_str': ' cores', 'sequence': 'A culinária brasileira é rica em sabores e cores, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.004134135786443949, 'token': 6696, 'token_str': ' drinks', 'sequence': 'A culinária brasileira é rica em sabores e drinks, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.0009097770671360195, 'token': 33455, 'token_str': ' nuances', 'sequence': 'A culinária brasileira é rica em sabores e nuances, tornando-se um dos maiores patrimônios do país.'},
{'score': 0.0008549498743377626, 'token': 606, 'token_str': ' comes', 'sequence': 'A culinária brasileira é rica em sabores e comes, tornando-se um dos maiores patrimônios do país.'}]
```
The model can be used by fine-tuning it for a specific task:
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
>>> from datasets import load_dataset
>>> model = AutoModelForSequenceClassification.from_pretrained("PORTULAN/albertina-ptbr-base", num_labels=2)
>>> tokenizer = AutoTokenizer.from_pretrained("PORTULAN/albertina-ptbr-base")
>>> dataset = load_dataset("PORTULAN/glue-ptpt", "rte")
>>> def tokenize_function(examples):
... return tokenizer(examples["sentence1"], examples["sentence2"], padding="max_length", truncation=True)
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
>>> training_args = TrainingArguments(output_dir="albertina-ptpt-rte", evaluation_strategy="epoch")
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=tokenized_datasets["train"],
... eval_dataset=tokenized_datasets["validation"],
... )
>>> trainer.train()
```
<br>
# Citation
When using or citing this model, kindly cite the following [publication](https://arxiv.org/abs/2403.01897):
``` latex
@misc{albertina-pt-fostering,
title={Fostering the Ecosystem of Open Neural Encoders
for Portuguese with Albertina PT-* family},
author={Rodrigo Santos and João Rodrigues and Luís Gomes
and João Silva and António Branco
and Henrique Lopes Cardoso and Tomás Freitas Osório
and Bernardo Leite},
year={2024},
eprint={2403.01897},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<br>
# Acknowledgments
The research reported here was partially supported by: PORTULAN CLARIN—Research Infrastructure for the Science and Technology of Language,
funded by Lisboa 2020, Alentejo 2020 and FCT—Fundação para a Ciência e Tecnologia under the
grant PINFRA/22117/2016; research project ALBERTINA - Foundation Encoder Model for Portuguese and AI, funded by FCT—Fundação para a Ciência e Tecnologia under the
grant CPCA-IAC/AV/478394/2022; innovation project ACCELERAT.AI - Multilingual Intelligent Contact Centers, funded by IAPMEI, I.P. - Agência para a Competitividade e Inovação under the grant C625734525-00462629, of Plano de Recuperação e Resiliência, call RE-C05-i01.01 – Agendas/Alianças Mobilizadoras para a Reindustrialização; and LIACC - Laboratory for AI and Computer Science, funded by FCT—Fundação para a Ciência e Tecnologia under the grant FCT/UID/CEC/0027/2020. |