Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources
|
|
13 |
# Model Card
|
14 |
## Summary
|
15 |
|
16 |
-
This model, Astrid-1B-
|
17 |
It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance.
|
18 |
Trained in English, it's a versatile tool for a variety of applications.
|
19 |
This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.
|
@@ -37,7 +37,7 @@ import torch
|
|
37 |
from transformers import pipeline
|
38 |
|
39 |
generate_text = pipeline(
|
40 |
-
model="
|
41 |
torch_dtype="auto",
|
42 |
trust_remote_code=True,
|
43 |
use_fast=True,
|
@@ -75,13 +75,13 @@ from h2oai_pipeline import H2OTextGenerationPipeline
|
|
75 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
76 |
|
77 |
tokenizer = AutoTokenizer.from_pretrained(
|
78 |
-
"
|
79 |
use_fast=True,
|
80 |
padding_side="left",
|
81 |
trust_remote_code=True,
|
82 |
)
|
83 |
model = AutoModelForCausalLM.from_pretrained(
|
84 |
-
"
|
85 |
torch_dtype="auto",
|
86 |
device_map={"": "cuda:0"},
|
87 |
trust_remote_code=True,
|
@@ -107,7 +107,7 @@ You may also construct the pipeline from the loaded model and tokenizer yourself
|
|
107 |
```python
|
108 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
109 |
|
110 |
-
model_name = "
|
111 |
# Important: The prompt needs to be in the same format the model was trained with.
|
112 |
# You can find an example prompt in the experiment logs.
|
113 |
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
|
@@ -181,7 +181,7 @@ This model was trained using H2O LLM Studio and with the configuration in [cfg.y
|
|
181 |
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
182 |
|
183 |
```bash
|
184 |
-
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=
|
185 |
```
|
186 |
|
187 |
|
|
|
13 |
# Model Card
|
14 |
## Summary
|
15 |
|
16 |
+
This model, Astrid-1B-CPU, is a GPT-NeoX model for causal language modeling, designed to generate human-like text.
|
17 |
It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance.
|
18 |
Trained in English, it's a versatile tool for a variety of applications.
|
19 |
This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.
|
|
|
37 |
from transformers import pipeline
|
38 |
|
39 |
generate_text = pipeline(
|
40 |
+
model="PAIXAI/Astrid-1B-CPU",
|
41 |
torch_dtype="auto",
|
42 |
trust_remote_code=True,
|
43 |
use_fast=True,
|
|
|
75 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
76 |
|
77 |
tokenizer = AutoTokenizer.from_pretrained(
|
78 |
+
"PAIXAI/Astrid-1B-CPU",
|
79 |
use_fast=True,
|
80 |
padding_side="left",
|
81 |
trust_remote_code=True,
|
82 |
)
|
83 |
model = AutoModelForCausalLM.from_pretrained(
|
84 |
+
"PAIXAI/Astrid-1B-CPU",
|
85 |
torch_dtype="auto",
|
86 |
device_map={"": "cuda:0"},
|
87 |
trust_remote_code=True,
|
|
|
107 |
```python
|
108 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
109 |
|
110 |
+
model_name = "PAIXAI/Astrid-1B-CPU" # either local folder or huggingface model name
|
111 |
# Important: The prompt needs to be in the same format the model was trained with.
|
112 |
# You can find an example prompt in the experiment logs.
|
113 |
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
|
|
|
181 |
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
182 |
|
183 |
```bash
|
184 |
+
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=PAIXAI/Astrid-1B-CPU --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
|
185 |
```
|
186 |
|
187 |
|