File size: 19,301 Bytes
0f7a0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab9a0a1
0f7a0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Union

import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from controlnet_union import ControlNetModel_Union
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import randn_tensor


def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    **kwargs,
):
    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
    timesteps = scheduler.timesteps

    return timesteps, num_inference_steps


class StableDiffusionXLControlNetPipeline(DiffusionPipeline, StableDiffusionMixin):
    model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: ControlNetModel_Union,
        scheduler: KarrasDiffusionSchedulers,
        force_zeros_for_empty_prompt: bool = True,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor,
            do_convert_rgb=True,
            do_normalize=False,
        )

        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)

    def encode_prompt(
        self,
        prompt: str,
        device: Optional[torch.device] = None,
        do_classifier_free_guidance: bool = True,
    ):
        device = device or self._execution_device
        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt is not None:
            batch_size = len(prompt)

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        prompt_2 = prompt
        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

        # textual inversion: process multi-vector tokens if necessary
        prompt_embeds_list = []
        prompts = [prompt, prompt_2]
        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )

            text_input_ids = text_inputs.input_ids

            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)

            # We are only ALWAYS interested in the pooled output of the final text encoder
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            prompt_embeds_list.append(prompt_embeds)

        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = True
        negative_prompt_embeds = None
        negative_pooled_prompt_embeds = None

        if do_classifier_free_guidance and zero_out_negative_prompt:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = ""
            negative_prompt_2 = negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )

            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, 1, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            if self.text_encoder_2 is not None:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            else:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * 1, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)

        return (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        )

    def check_inputs(
        self,
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
        image,
        controlnet_conditioning_scale=1.0,
    ):
        if prompt_embeds is None:
            raise ValueError("Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined.")

        if negative_prompt_embeds is None:
            raise ValueError("Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined.")

        if prompt_embeds.shape != negative_prompt_embeds.shape:
            raise ValueError(
                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                f" {negative_prompt_embeds.shape}."
            )

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )

        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
            )

        # Check `image`
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
        )
        if (
            isinstance(self.controlnet, ControlNetModel_Union)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
        ):
            if not isinstance(image, PIL.Image.Image):
                raise TypeError(f"image must be passed and has to be a PIL image, but is {type(image)}")

        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if (
            isinstance(self.controlnet, ControlNetModel_Union)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
        ):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        else:
            assert False

    def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
        image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)

        image_batch_size = image.shape[0]

        image = image.repeat_interleave(image_batch_size, dim=0)
        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance:
            image = torch.cat([image] * 2)

        return image

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )

        latents = randn_tensor(shape, device=device, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    def __call__(
        self,
        prompt_embeds: torch.Tensor,
        negative_prompt_embeds: torch.Tensor,
        pooled_prompt_embeds: torch.Tensor,
        negative_pooled_prompt_embeds: torch.Tensor,
        image: PipelineImageInput = None,
        num_inference_steps: int = 8,
        guidance_scale: float = 1.5,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
    ):
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
            image,
            controlnet_conditioning_scale,
        )

        self._guidance_scale = guidance_scale

        # 2. Define call parameters
        batch_size = 1
        device = self._execution_device

        # 4. Prepare image
        if isinstance(self.controlnet, ControlNetModel_Union):
            image = self.prepare_image(
                image=image,
                device=device,
                dtype=self.controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
            )
            height, width = image.shape[-2:]
        else:
            assert False

        # 5. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device)
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
        )

        # 7 Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds

        add_time_ids = negative_add_time_ids = torch.tensor(
            image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:]
        ).unsqueeze(0)

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size, 1)

        controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
        union_control_type = (
            torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0]).to(device, dtype=prompt_embeds.dtype).repeat(batch_size * 2, 1)
        )

        added_cond_kwargs = {
            "text_embeds": add_text_embeds,
            "time_ids": add_time_ids,
            "control_type": union_control_type,
        }

        controlnet_prompt_embeds = prompt_embeds
        controlnet_added_cond_kwargs = added_cond_kwargs

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # controlnet(s) inference
                control_model_input = latent_model_input

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond_list=controlnet_image_list,
                    conditioning_scale=controlnet_conditioning_scale,
                    guess_mode=False,
                    added_cond_kwargs=controlnet_added_cond_kwargs,
                    return_dict=False,
                )

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=None,
                    cross_attention_kwargs={},
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if i == 2:
                    prompt_embeds = prompt_embeds[-1:]
                    add_text_embeds = add_text_embeds[-1:]
                    add_time_ids = add_time_ids[-1:]
                    union_control_type = union_control_type[-1:]

                    added_cond_kwargs = {
                        "text_embeds": add_text_embeds,
                        "time_ids": add_time_ids,
                        "control_type": union_control_type,
                    }

                    controlnet_prompt_embeds = prompt_embeds
                    controlnet_added_cond_kwargs = added_cond_kwargs

                    image = image[-1:]
                    controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]

                    self._guidance_scale = 0.0

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        latents = latents / self.vae.config.scaling_factor
        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image)[0]

        # Offload all models
        self.maybe_free_model_hooks()

        return image