File size: 19,301 Bytes
0f7a0a6 ab9a0a1 0f7a0a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from controlnet_union import ControlNetModel_Union
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import randn_tensor
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
**kwargs,
):
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class StableDiffusionXLControlNetPipeline(DiffusionPipeline, StableDiffusionMixin):
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
_optional_components = [
"tokenizer",
"tokenizer_2",
"text_encoder",
"text_encoder_2",
]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: ControlNetModel_Union,
scheduler: KarrasDiffusionSchedulers,
force_zeros_for_empty_prompt: bool = True,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_convert_rgb=True,
do_normalize=False,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
def encode_prompt(
self,
prompt: str,
device: Optional[torch.device] = None,
do_classifier_free_guidance: bool = True,
):
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
prompt_2 = prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
# textual inversion: process multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = True
negative_prompt_embeds = None
negative_pooled_prompt_embeds = None
if do_classifier_free_guidance and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = ""
negative_prompt_2 = negative_prompt
# normalize str to list
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_2 = (
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
)
uncond_tokens: List[str]
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, 1, 1)
prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
if self.text_encoder_2 is not None:
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
else:
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * 1, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
return (
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
def check_inputs(
self,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
image,
controlnet_conditioning_scale=1.0,
):
if prompt_embeds is None:
raise ValueError("Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined.")
if negative_prompt_embeds is None:
raise ValueError("Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined.")
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
)
if (
isinstance(self.controlnet, ControlNetModel_Union)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
):
if not isinstance(image, PIL.Image.Image):
raise TypeError(f"image must be passed and has to be a PIL image, but is {type(image)}")
else:
assert False
# Check `controlnet_conditioning_scale`
if (
isinstance(self.controlnet, ControlNetModel_Union)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
else:
assert False
def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)
image_batch_size = image.shape[0]
image = image.repeat_interleave(image_batch_size, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance:
image = torch.cat([image] * 2)
return image
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
latents = randn_tensor(shape, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@property
def guidance_scale(self):
return self._guidance_scale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
def __call__(
self,
prompt_embeds: torch.Tensor,
negative_prompt_embeds: torch.Tensor,
pooled_prompt_embeds: torch.Tensor,
negative_pooled_prompt_embeds: torch.Tensor,
image: PipelineImageInput = None,
num_inference_steps: int = 8,
guidance_scale: float = 1.5,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
):
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
image,
controlnet_conditioning_scale,
)
self._guidance_scale = guidance_scale
# 2. Define call parameters
batch_size = 1
device = self._execution_device
# 4. Prepare image
if isinstance(self.controlnet, ControlNetModel_Union):
image = self.prepare_image(
image=image,
device=device,
dtype=self.controlnet.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
)
height, width = image.shape[-2:]
else:
assert False
# 5. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device)
self._num_timesteps = len(timesteps)
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
)
# 7 Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = negative_add_time_ids = torch.tensor(
image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:]
).unsqueeze(0)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size, 1)
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
union_control_type = (
torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0]).to(device, dtype=prompt_embeds.dtype).repeat(batch_size * 2, 1)
)
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids,
"control_type": union_control_type,
}
controlnet_prompt_embeds = prompt_embeds
controlnet_added_cond_kwargs = added_cond_kwargs
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# controlnet(s) inference
control_model_input = latent_model_input
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond_list=controlnet_image_list,
conditioning_scale=controlnet_conditioning_scale,
guess_mode=False,
added_cond_kwargs=controlnet_added_cond_kwargs,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs={},
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if i == 2:
prompt_embeds = prompt_embeds[-1:]
add_text_embeds = add_text_embeds[-1:]
add_time_ids = add_time_ids[-1:]
union_control_type = union_control_type[-1:]
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids,
"control_type": union_control_type,
}
controlnet_prompt_embeds = prompt_embeds
controlnet_added_cond_kwargs = added_cond_kwargs
image = image[-1:]
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
self._guidance_scale = 0.0
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image)[0]
# Offload all models
self.maybe_free_model_hooks()
return image
|