Update README.md
Browse files
README.md
CHANGED
@@ -154,23 +154,40 @@ This model uses a specific chat format for optimal performance.
|
|
154 |
## Usage with HuggingFace transformers
|
155 |
The model can be used with HuggingFace's `transformers` library:
|
156 |
```python
|
|
|
157 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
158 |
|
159 |
-
|
|
|
|
|
160 |
tokenizer = AutoTokenizer.from_pretrained("OuteAI/Lite-Mistral-150M-v2-Instruct")
|
161 |
|
162 |
-
def generate_response(message):
|
163 |
-
#
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
# Decode the generated output
|
168 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
169 |
-
|
170 |
return generated_text
|
171 |
|
172 |
-
message = "
|
173 |
response = generate_response(message)
|
|
|
174 |
```
|
175 |
|
176 |
## Risk Disclaimer
|
|
|
154 |
## Usage with HuggingFace transformers
|
155 |
The model can be used with HuggingFace's `transformers` library:
|
156 |
```python
|
157 |
+
import torch
|
158 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
159 |
|
160 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
161 |
+
|
162 |
+
model = AutoModelForCausalLM.from_pretrained("OuteAI/Lite-Mistral-150M-v2-Instruct").to(device)
|
163 |
tokenizer = AutoTokenizer.from_pretrained("OuteAI/Lite-Mistral-150M-v2-Instruct")
|
164 |
|
165 |
+
def generate_response(message: str, temperature: float = 0.4, repetition_penalty: float = 1.1) -> str:
|
166 |
+
# Apply the chat template and convert to PyTorch tensors
|
167 |
+
messages = [
|
168 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
169 |
+
{"role": "user", "content": message}
|
170 |
+
]
|
171 |
+
input_ids = tokenizer.apply_chat_template(
|
172 |
+
messages, add_generation_prompt=True, return_tensors="pt"
|
173 |
+
).to(device)
|
174 |
+
|
175 |
+
# Generate the response
|
176 |
+
output = model.generate(
|
177 |
+
input_ids,
|
178 |
+
max_length=512,
|
179 |
+
temperature=temperature,
|
180 |
+
repetition_penalty=repetition_penalty,
|
181 |
+
do_sample=True
|
182 |
+
)
|
183 |
|
184 |
# Decode the generated output
|
185 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
186 |
return generated_text
|
187 |
|
188 |
+
message = "I'd like to learn about language models. Can you break down the concept for me?"
|
189 |
response = generate_response(message)
|
190 |
+
print(response)
|
191 |
```
|
192 |
|
193 |
## Risk Disclaimer
|