File size: 3,021 Bytes
4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 4af4efa 12f5476 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: ft-Llama3-8b-orpo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ft-Llama3-8b-orpo
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the mlabonne/orpo-dpo-mix-40k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8983
- Rewards/chosen: -0.0999
- Rewards/rejected: -0.1748
- Rewards/accuracies: 0.4000
- Rewards/margins: 0.0749
- Logps/rejected: -1.7478
- Logps/chosen: -0.9993
- Logits/rejected: -1.5466
- Logits/chosen: -1.5315
- Nll Loss: 0.8281
- Log Odds Ratio: -0.7026
- Log Odds Chosen: 0.7314
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 1.6579 | 0.2 | 25 | 1.2469 | -0.1560 | -0.2318 | 0.5 | 0.0758 | -2.3180 | -1.5595 | -1.2300 | -1.0199 | 1.1776 | -0.6935 | 0.7440 |
| 1.1014 | 0.4 | 50 | 1.0297 | -0.1262 | -0.1994 | 0.5 | 0.0732 | -1.9942 | -1.2621 | -1.4006 | -1.3743 | 0.9587 | -0.7096 | 0.7137 |
| 0.9391 | 0.61 | 75 | 0.9463 | -0.1106 | -0.1844 | 0.5 | 0.0738 | -1.8440 | -1.1062 | -1.5970 | -1.5504 | 0.8754 | -0.7083 | 0.7185 |
| 0.676 | 0.81 | 100 | 0.8983 | -0.0999 | -0.1748 | 0.4000 | 0.0749 | -1.7478 | -0.9993 | -1.5466 | -1.5315 | 0.8281 | -0.7026 | 0.7314 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.4.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |