sylwia-kuros commited on
Commit
c0310fb
1 Parent(s): f0f531f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -3
README.md CHANGED
@@ -1,3 +1,50 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # notus-7b-v1-fp16-ov
6
+
7
+ * Model creator: [Argilla](https://huggingface.co/argilla)
8
+ * Original model: [notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1)
9
+
10
+ ## Description
11
+
12
+ This is [notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to int8 by [NNCF](https://github.com/openvinotoolkit/nncf).
13
+
14
+ ## Compatibility
15
+
16
+ The provided OpenVINO™ IR model is compatible with:
17
+
18
+ * OpenVINO version 2024.1.0 and higher
19
+ * Optimum Intel 1.16.0 and higher
20
+
21
+ ## Running Model Inference
22
+
23
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
24
+
25
+ ```
26
+ pip install optimum[openvino]
27
+ ```
28
+
29
+ 2. Run model inference:
30
+
31
+ ```
32
+ from transformers import AutoTokenizer
33
+ from optimum.intel.openvino import OVModelForCausalLM
34
+
35
+ model_id = "OpenVINO/notus-7b-v1-fp16-ov"
36
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
37
+ model = OVModelForCausalLM.from_pretrained(model_id)
38
+
39
+ inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
40
+
41
+ outputs = model.generate(**inputs, max_length=200)
42
+ text = tokenizer.batch_decode(outputs)[0]
43
+ print(text)
44
+ ```
45
+
46
+ For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
47
+
48
+ ## Legal information
49
+
50
+ The original model is distributed under mit license. More details can be found in [original model card](https://huggingface.co/argilla/notus-7b-v1).