openvino-ci
commited on
Commit
•
4bb20ca
1
Parent(s):
cd3e8c0
Upload folder using huggingface_hub
Browse files- README.md +18 -49
- config.json +2 -2
- generation_config.json +1 -1
- openvino_model.bin +2 -2
- openvino_model.xml +0 -0
- tokenizer.json +6 -16
- tokenizer_config.json +2 -2
README.md
CHANGED
@@ -1,34 +1,33 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
|
4 |
-
- en
|
5 |
---
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
* Model creator: [Mistral AI](https://huggingface.co/mistralai)
|
10 |
-
* Original model: [Mistral-7b-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
11 |
|
12 |
## Description
|
13 |
-
|
14 |
-
This is [Mistral-7b-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
15 |
|
16 |
## Quantization Parameters
|
17 |
|
18 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
19 |
|
20 |
-
* mode: **
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html)
|
23 |
|
24 |
## Compatibility
|
25 |
|
26 |
The provided OpenVINO™ IR model is compatible with:
|
27 |
|
28 |
-
* OpenVINO version 2024.
|
29 |
* Optimum Intel 1.16.0 and higher
|
30 |
|
31 |
-
## Running Model Inference
|
32 |
|
33 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
34 |
|
@@ -42,56 +41,26 @@ pip install optimum[openvino]
|
|
42 |
from transformers import AutoTokenizer
|
43 |
from optimum.intel.openvino import OVModelForCausalLM
|
44 |
|
45 |
-
model_id = "OpenVINO/mistral-7b-
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
47 |
model = OVModelForCausalLM.from_pretrained(model_id)
|
48 |
|
49 |
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
|
50 |
|
51 |
-
outputs = model.generate(inputs,
|
52 |
-
|
|
|
53 |
```
|
54 |
|
55 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
56 |
|
57 |
-
# Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
|
58 |
-
|
59 |
-
1. Install packages required for using OpenVINO GenAI.
|
60 |
-
```
|
61 |
-
pip install openvino-genai huggingface_hub
|
62 |
-
```
|
63 |
-
|
64 |
-
2. Download model from HuggingFace Hub
|
65 |
-
|
66 |
-
```
|
67 |
-
import huggingface_hub as hf_hub
|
68 |
-
|
69 |
-
model_id = "OpenVINO/mistral-7b-instrcut-v0.1-int4-ov"
|
70 |
-
model_path = "mistral-7b-instrcut-v0.1-int4-ov"
|
71 |
-
|
72 |
-
hf_hub.snapshot_download(model_id, local_dir=model_path)
|
73 |
-
|
74 |
-
```
|
75 |
-
|
76 |
-
3. Run model inference:
|
77 |
-
|
78 |
-
```
|
79 |
-
import openvino_genai as ov_genai
|
80 |
-
|
81 |
-
device = "CPU"
|
82 |
-
pipe = ov_genai.LLMPipeline(model_path, device)
|
83 |
-
print(pipe.generate("What is OpenVINO?"))
|
84 |
-
```
|
85 |
-
|
86 |
-
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
|
87 |
-
|
88 |
## Limitations
|
89 |
|
90 |
-
Check the original model card for [limitations](
|
91 |
|
92 |
## Legal information
|
93 |
|
94 |
-
The original model is distributed under [
|
95 |
|
96 |
## Disclaimer
|
97 |
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
license_link: https://choosealicense.com/licenses/apache-2.0/
|
|
|
4 |
---
|
5 |
+
# mistral-7b-instruct-v0.1-int4-ov
|
6 |
+
* Model creator: [Mistralai](https://huggingface.co/mistralai)
|
7 |
+
* Original model: [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
|
|
|
|
8 |
|
9 |
## Description
|
10 |
+
This is [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
|
|
11 |
|
12 |
## Quantization Parameters
|
13 |
|
14 |
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
15 |
|
16 |
+
* mode: **int4_asym**
|
17 |
+
* ratio: **0.8**
|
18 |
+
* group_size: **128**
|
19 |
+
|
20 |
+
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
|
21 |
|
|
|
22 |
|
23 |
## Compatibility
|
24 |
|
25 |
The provided OpenVINO™ IR model is compatible with:
|
26 |
|
27 |
+
* OpenVINO version 2024.1.0 and higher
|
28 |
* Optimum Intel 1.16.0 and higher
|
29 |
|
30 |
+
## Running Model Inference
|
31 |
|
32 |
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
33 |
|
|
|
41 |
from transformers import AutoTokenizer
|
42 |
from optimum.intel.openvino import OVModelForCausalLM
|
43 |
|
44 |
+
model_id = "OpenVINO/mistral-7b-instruct-v0.1-int4-ov"
|
45 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
46 |
model = OVModelForCausalLM.from_pretrained(model_id)
|
47 |
|
48 |
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
|
49 |
|
50 |
+
outputs = model.generate(**inputs, max_length=200)
|
51 |
+
text = tokenizer.batch_decode(outputs)[0]
|
52 |
+
print(text)
|
53 |
```
|
54 |
|
55 |
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
## Limitations
|
58 |
|
59 |
+
Check the original model card for [limitations]().
|
60 |
|
61 |
## Legal information
|
62 |
|
63 |
+
The original model is distributed under [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).
|
64 |
|
65 |
## Disclaimer
|
66 |
|
config.json
CHANGED
@@ -19,7 +19,7 @@
|
|
19 |
"rope_theta": 10000.0,
|
20 |
"sliding_window": 4096,
|
21 |
"tie_word_embeddings": false,
|
22 |
-
"transformers_version": "4.
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 32000
|
25 |
-
}
|
|
|
19 |
"rope_theta": 10000.0,
|
20 |
"sliding_window": 4096,
|
21 |
"tie_word_embeddings": false,
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
"use_cache": true,
|
24 |
"vocab_size": 32000
|
25 |
+
}
|
generation_config.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
-
"transformers_version": "4.
|
6 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.41.2"
|
6 |
}
|
openvino_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99eedd1fa219d94465dc7874ee240d0f515b23709f90bf92ab3bf589f64d59f6
|
3 |
+
size 4617228256
|
openvino_model.xml
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
CHANGED
@@ -31,23 +31,13 @@
|
|
31 |
"special": true
|
32 |
}
|
33 |
],
|
34 |
-
"normalizer":
|
35 |
-
|
36 |
-
"
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"type": "Replace",
|
43 |
-
"pattern": {
|
44 |
-
"String": " "
|
45 |
-
},
|
46 |
-
"content": "▁"
|
47 |
-
}
|
48 |
-
]
|
49 |
},
|
50 |
-
"pre_tokenizer": null,
|
51 |
"post_processor": {
|
52 |
"type": "TemplateProcessing",
|
53 |
"single": [
|
|
|
31 |
"special": true
|
32 |
}
|
33 |
],
|
34 |
+
"normalizer": null,
|
35 |
+
"pre_tokenizer": {
|
36 |
+
"type": "Metaspace",
|
37 |
+
"replacement": "▁",
|
38 |
+
"prepend_scheme": "first",
|
39 |
+
"split": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
},
|
|
|
41 |
"post_processor": {
|
42 |
"type": "TemplateProcessing",
|
43 |
"single": [
|
tokenizer_config.json
CHANGED
@@ -29,10 +29,10 @@
|
|
29 |
},
|
30 |
"additional_special_tokens": [],
|
31 |
"bos_token": "<s>",
|
32 |
-
"chat_template": "{{
|
33 |
"clean_up_tokenization_spaces": false,
|
34 |
"eos_token": "</s>",
|
35 |
-
"legacy":
|
36 |
"model_max_length": 1000000000000000019884624838656,
|
37 |
"pad_token": null,
|
38 |
"sp_model_kwargs": {},
|
|
|
29 |
},
|
30 |
"additional_special_tokens": [],
|
31 |
"bos_token": "<s>",
|
32 |
+
"chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}\n {%- endif %}\n {%- if message['role'] == 'user' %}\n {%- if loop.first and system_message is defined %}\n {{- ' [INST] ' + system_message + '\\n\\n' + message['content'] + ' [/INST]' }}\n {%- else %}\n {{- ' [INST] ' + message['content'] + ' [/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {{- ' ' + message['content'] + eos_token}}\n {%- else %}\n {{- raise_exception('Only user and assistant roles are supported, with the exception of an initial optional system message!') }}\n {%- endif %}\n{%- endfor %}\n",
|
33 |
"clean_up_tokenization_spaces": false,
|
34 |
"eos_token": "</s>",
|
35 |
+
"legacy": false,
|
36 |
"model_max_length": 1000000000000000019884624838656,
|
37 |
"pad_token": null,
|
38 |
"sp_model_kwargs": {},
|