leaderboard-pr-bot's picture
Adding Evaluation Results
2a96f75 verified
|
raw
history blame
4.88 kB
---
language:
- en
license: cc-by-nc-4.0
model-index:
- name: mistral-ft-optimized-1218
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenPipe/mistral-ft-optimized-1218
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenPipe/mistral-ft-optimized-1218
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.99
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenPipe/mistral-ft-optimized-1218
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.48
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenPipe/mistral-ft-optimized-1218
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenPipe/mistral-ft-optimized-1218
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.25
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenPipe/mistral-ft-optimized-1218
name: Open LLM Leaderboard
---
**Update 12/27/2023**: We have released an updated version of this model with similar performance and a more permissive license at https://huggingface.co/OpenPipe/mistral-ft-optimized-1227. We recommend that model over this one for most users.
---
This model is intended to be a strong base suitable for downstream fine-tuning on a variety of tasks. Based on our internal evaluations, we believe it's one of the strongest models for most down-stream tasks. You can read more about our development and evaluation process [here](https://openpipe.ai/blog/mistral-7b-fine-tune-optimized).
---
[Mergekit](https://github.com/cg123/mergekit) config used to create this model:
```yaml
slices:
- sources:
- model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
layer_range: [0, 32]
- model: Q-bert/MetaMath-Cybertron-Starling
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
```
---
*Note*: It appears that https://huggingface.co/Weyaxi/Seraph-7B was merged from the same base models using the same [mergekit](https://github.com/cg123/mergekit) defaults as this model. So major credit goes to @Weyaxi both for creating one of the base merges this model was merged from, as well as being the first one to perform this exact merge as well!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenPipe__mistral-ft-optimized-1218)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.94|
|AI2 Reasoning Challenge (25-Shot)|67.92|
|HellaSwag (10-Shot) |86.26|
|MMLU (5-Shot) |64.99|
|TruthfulQA (0-shot) |59.48|
|Winogrande (5-shot) |80.74|
|GSM8k (5-shot) |72.25|