File size: 31,458 Bytes
3d28019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
from typing import Optional, Tuple, Union
import copy

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import PreTrainedModel
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    BaseModelOutput,
)
from transformers.utils import logging, is_torch_fx_proxy

from .configuration_openba import OpenBAConfig


logger = logging.get_logger(__name__)

# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
    sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
    return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)


def rotate_half(x) -> torch.Tensor:
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
    sin = torch.cat((sin, sin), dim=-1).to(tensor.device)[:, :, None, :]
    cos = torch.cat((cos, cos), dim=-1).to(tensor.device)[:, :, None, :]
    return (tensor * cos) + (rotate_half(tensor) * sin)


class SwiGLUMLP(nn.Module):
    def __init__(self, config):
        super().__init__()

        multiple_of: int = 256  # make SwiGLU hidden layer size multiple of large power of 2
        hidden_size = config.hidden_size
        # ffn_hidden_size = int(2 * config.ffn_hidden_size / 3) 
        # ffn_hidden_size = multiple_of * ((ffn_hidden_size + multiple_of - 1) // multiple_of)
        ffn_hidden_size=config.ffn_hidden_size
        self.ffn_hidden_size = ffn_hidden_size

        self.fc_in = nn.Linear(hidden_size, 2 * ffn_hidden_size, bias=config.add_ffn_bias)
        self.fc_out = nn.Linear(ffn_hidden_size, hidden_size, bias=config.add_ffn_bias)
        
        def swiglu(x):
            x = torch.chunk(x, 2, dim=-1)
            return F.silu(x[0]) * x[1]
        self.act_func = swiglu

    def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
        hidden_states = self.fc_in(hidden_states)
        hidden_states = self.act_func(hidden_states)
        hidden_states = self.fc_out(hidden_states)
        return hidden_states


class OpenBAAttention(nn.Module):
    def __init__(self, config, attn_type='self'):
        super().__init__()
        self.attn_type = attn_type
        self.is_decoder = config.is_decoder
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_heads
        self.kv_channels = config.kv_channels
        self.proj_size = self.kv_channels * self.num_heads
        self.dropout = config.attention_dropout
        self.scale_attn = torch.sqrt(torch.tensor(self.kv_channels, dtype=torch.float32))

        if self.attn_type == 'self':
            self.qkv = nn.Linear(self.hidden_size, 3 * self.proj_size, bias=config.add_qkv_bias)
        else:
            assert self.attn_type == 'cross'
            self.q = nn.Linear(self.hidden_size, self.proj_size, bias=config.add_qkv_bias)
            self.kv = nn.Linear(self.hidden_size, 2 * self.proj_size, bias=config.add_qkv_bias)

        self.rotary_embedding = create_sinusoidal_positions(
            num_pos=config.max_seq_length,
            dim=self.kv_channels,
        )

        self.o = nn.Linear(self.proj_size, self.hidden_size, bias=config.add_qkv_bias)

    def forward(
        self,
        hidden_states: Optional[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        key_value_states: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        layer_head_mask: Optional[Tuple[torch.Tensor]] = None,
        position_ids:Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ):
        # input is (batch_size, seq_length, hidden_size)
        batch_size, seq_length = hidden_states.shape[:2]
        if past_key_value is not None:
            if len(past_key_value) != 2:
                raise ValueError(
                    f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
                )

        if self.rotary_embedding.device != position_ids.device:
            self.rotary_embedding = self.rotary_embedding.to(position_ids.device)

        if self.attn_type == 'self':
            mixed_qkv_states = self.qkv(hidden_states)
            new_tensor_shape = mixed_qkv_states.size()[:-1] + (self.num_heads, 3 * self.kv_channels)
            mixed_qkv_states = mixed_qkv_states.view(*new_tensor_shape)
            query_states, key_states, value_states = torch.chunk(mixed_qkv_states, 3, dim=-1)
            # rotary position embedding
            sincos = self.rotary_embedding[position_ids]
            sin, cos = torch.chunk(sincos, 2, dim=-1)
            query_states = apply_rotary_pos_emb(query_states, sin, cos)
            key_states = apply_rotary_pos_emb(key_states, sin, cos)
            # reshape to (batch_size, num_head, seq_length, kv_channels)
            query_states = query_states.transpose(1, 2)
            key_states = key_states.transpose(1, 2)
            value_states = value_states.transpose(1, 2)
            if past_key_value is not None:
                past_key_states, past_value_states = past_key_value
                key_states = torch.cat([past_key_states, key_states], dim=-2)
                value_states = torch.cat([past_value_states, value_states], dim=-2)
        else:
            assert self.attn_type == 'cross'
            query_states = self.q(hidden_states)
            new_tensor_shape = query_states.size()[:-1] + (self.num_heads, self.kv_channels)
            query_states = query_states.view(*new_tensor_shape)
            # reshape to (batch_size, num_head, seq_length, kv_channels)
            query_states = query_states.transpose(1, 2)
            if past_key_value is None:
                mixed_kv_states = self.kv(key_value_states)
                new_tensor_shape = mixed_kv_states.size()[:-1] + (self.num_heads, 2 * self.kv_channels)
                mixed_kv_states = mixed_kv_states.view(*new_tensor_shape)
                key_states, value_states = torch.chunk(mixed_kv_states, 2, dim=-1)
                # reshape to (batch_size, num_head, seq_length, kv_channels)
                key_states = key_states.transpose(1, 2)
                value_states = value_states.transpose(1, 2)
            else:
                key_states, value_states = past_key_value

        # compute attention score
        query_states = query_states.to(torch.float32)
        key_states = key_states.to(torch.float32)
        attn_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) / self.scale_attn
        attn_scores = attn_scores.masked_fill_(attention_mask, -10000.0)
        attn_weights = F.softmax(attn_scores, dim=-1).type_as(attn_scores)
        attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
        attn_weights = attn_weights.to(value_states.dtype)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask

        attn_output = torch.matmul(attn_weights, value_states)
        attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.proj_size)
        attn_output = self.o(attn_output)

        present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
        outputs = (attn_output, present_key_value_state)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class OpenBABlock(nn.Module):
    def __init__(self, config) -> None:
        super().__init__()
        self.is_decoder = config.is_decoder
        self.dropout = config.hidden_dropout
        self.input_layernorm = nn.LayerNorm(config.hidden_size)
        self.self_attn = OpenBAAttention(config, attn_type='self')
        self.post_attn_layernorm = nn.LayerNorm(config.hidden_size)
        if self.is_decoder:
            self.inter_attn = OpenBAAttention(config, attn_type='cross')
            self.post_inter_attn_layernorm = nn.LayerNorm(config.hidden_size)
        self.mlp = SwiGLUMLP(config)

    def forward(
        self,
        hidden_states=None,
        attention_mask=None,
        position_ids=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
    ):
        if past_key_value is not None:
            if not self.is_decoder:
                raise ValueError("`past_key_values` is passed to the encoder. Please make sure this is intended.")
            expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

            if len(past_key_value) != expected_num_past_key_values:
                raise ValueError(
                    f"There should be {expected_num_past_key_values} past states. "
                    f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                    f"Got {len(past_key_value)} past key / value states"
                )

            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
        else:
            self_attn_past_key_value, cross_attn_past_key_value = None, None

        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
        attn_outputs = self.self_attn(
            layernorm_output,
            attention_mask=attention_mask,
            position_ids=position_ids,
            layer_head_mask=layer_head_mask,
            past_key_value=self_attn_past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output, present_key_value_state = attn_outputs[:2]
        attn_weights = attn_outputs[2:]
        residual = hidden_states
        # Layer norm post the self attention.
        attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
        layernorm_input = residual + attn_output
        layernorm_output = self.post_attn_layernorm(layernorm_input)

        if self.is_decoder:
            assert encoder_hidden_states is not None
            attn_outputs = self.inter_attn(
                layernorm_output,
                attention_mask=encoder_attention_mask,
                key_value_states=encoder_hidden_states,
                position_ids=position_ids,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            attn_output = attn_outputs[0]
            attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
            # residual connection
            residual = layernorm_input
            layernorm_input = residual + attn_output
            layernorm_output = self.post_inter_attn_layernorm(layernorm_input)
            # Combine self attn and cross attn key value states
            if present_key_value_state is not None:
                present_key_value_state += attn_outputs[1]
            attn_weights += attn_outputs[2:]

        # MLP.
        mlp_output = self.mlp(layernorm_output)
        mlp_output = nn.functional.dropout(mlp_output, p=self.dropout, training=self.training)
        # Second residual connection.
        residual = layernorm_input
        output = residual + mlp_output
        outputs = (output,)

        if use_cache:
            outputs += (present_key_value_state,) + attn_weights
        else:
            outputs += attn_weights
        return outputs


class OpenBAPreTrainedModel(PreTrainedModel):
    config_class = OpenBAConfig
    base_model_prefix = "transformer"
    _no_split_modules = ["OpenBABlock"]

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (OpenBAAttention, OpenBAStack)):
            module.gradient_checkpointing = value

    def _init_weights(self, module):
        """Initialize the weights"""
        factor = self.config.initializer_factor
        if isinstance(module, nn.LayerNorm):
            module.weight.data.fill_(1.0)
            module.bias.data.zero_()
        elif isinstance(module, OpenBAForConditionalGeneration):
            module.shared_embedding.weight.data.normal_(mean=0.0, std=factor * 1.0)
            if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
                module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
        elif isinstance(module, SwiGLUMLP):
            module.fc_in.weight.data.normal_(mean=0.0, std=factor * ((self.config.hidden_size) ** -0.5))
            if hasattr(module.fc_in, "bias") and module.fc_in.bias is not None:
                module.fc_in.bias.data.zero_()
            module.fc_out.weight.data.normal_(mean=0.0, std=factor * ((module.ffn_hidden_size) ** -0.5))
            if hasattr(module.fc_out, "bias") and module.fc_out.bias is not None:
                module.fc_out.bias.data.zero_()
        elif isinstance(module, OpenBAAttention):
            hidden_size = self.config.hidden_size
            kv_channels = self.config.kv_channels
            n_heads = self.config.num_heads
            if module.attn_type == 'self':
                module.qkv.weight.data[:n_heads * kv_channels].normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5))
                module.qkv.weight.data[n_heads * kv_channels:].normal_(mean=0.0, std=factor * (hidden_size ** -0.5))
            else:
                module.q.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5))
                module.kv.weight.data.normal_(mean=0.0, std=factor * (hidden_size ** -0.5))
            module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * kv_channels) ** -0.5))

    def _shift_right(self, input_ids):
        decoder_start_token_id = self.config.decoder_start_token_id
        pad_token_id = self.config.pad_token_id

        if decoder_start_token_id is None:
            raise ValueError(
                "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
                "See T5 docs for more information."
            )

        # shift inputs to the right
        if is_torch_fx_proxy(input_ids):
            # Item assignment is not supported natively for proxies.
            shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
            shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
        else:
            shifted_input_ids = input_ids.new_zeros(input_ids.shape)
            shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
            shifted_input_ids[..., 0] = decoder_start_token_id

        if pad_token_id is None:
            raise ValueError("self.model.config.pad_token_id has to be defined.")
        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

        return shifted_input_ids

class OpenBAStack(OpenBAPreTrainedModel):
    def __init__(self, config, embed_tokens):
        super().__init__(config)
        self.embed_tokens = embed_tokens
        self.is_decoder = config.is_decoder
        self.block = nn.ModuleList(
            [OpenBABlock(config) for _ in range(config.num_layers)]
        )
        self.final_layernorm = nn.LayerNorm(config.hidden_size)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # get batch size and seq_length
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # required mask seq length can be calculated via length of past
        if past_key_values is None:
            past_length = 0
            past_key_values = [None] * len(self.block)
        else:
            past_length = past_key_values[0][0].size(-2)
        cur_length = past_length + seq_length

        # position ids
        position_ids = torch.arange(past_length, cur_length, dtype=torch.long, device=device)
        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)

        # Attention mask
        if attention_mask is None:
            attention_mask = torch.ones(batch_size, seq_length, device=device)
        # get extended self-attention mask
        if self.is_decoder:
            if len(attention_mask.shape) == 2:
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
                causal_mask = causal_mask.to(attention_mask.dtype)
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            elif len(attention_mask.shape) == 3:
                extended_attention_mask = attention_mask[:, None, :, :]
            else:
                raise ValueError
        else:
            extended_attention_mask = attention_mask[:, None, None, :]
        extended_attention_mask = extended_attention_mask < 0.5
        # get extended self-attention mask
        # here we replace encoder_decoder_attention_mask with encoder_attention_mask
        if self.is_decoder and encoder_hidden_states is not None:
            if encoder_attention_mask is None:
                encoder_seq_length = encoder_hidden_states.shape[1]
                encoder_attention_mask = torch.ones(
                    batch_size, encoder_seq_length, device=device, dtype=torch.long
                )
            extended_encoder_attention_mask = encoder_attention_mask[:, None, None, :]
            extended_encoder_attention_mask = extended_encoder_attention_mask < 0.5
        else:
            extended_encoder_attention_mask = None
        

        # input embeddings
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
        cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and self.is_decoder) else None
        hidden_states = inputs_embeds

        for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
            layer_head_mask = head_mask[i]
            cross_attn_layer_head_mask = cross_attn_head_mask[i]
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            layer_outputs = layer_module(
                hidden_states,
                attention_mask=extended_attention_mask,
                position_ids=position_ids,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=extended_encoder_attention_mask,
                layer_head_mask=layer_head_mask,
                cross_attn_layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=past_key_value,
                use_cache=use_cache,
                output_attentions=output_attentions,
            )
            # layer_outputs is a tuple with:
            # hidden-states, key-value-states, (self-attention weights), (cross-attention weights)
            if use_cache is False:
                layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]

            hidden_states, present_key_value_state = layer_outputs[:2]
            if use_cache:
                present_key_value_states += (present_key_value_state,)

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[2],)
                if self.is_decoder:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[3],)

        hidden_states = self.final_layernorm(hidden_states)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    present_key_value_states,
                    all_hidden_states,
                    all_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


class OpenBAForConditionalGeneration(OpenBAPreTrainedModel):
    _keys_to_ignore_on_load_missing = [
        r"encoder.embed_tokens.weight",
        r"decoder.embed_tokens.weight",
    ]
    def __init__(self, config):
        super().__init__(config)
        self.shared_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
        self.hidden_size = config.hidden_size

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = OpenBAStack(encoder_config, self.shared_embedding)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        decoder_config.max_seq_length = config.decoder_max_seq_length
        self.decoder = OpenBAStack(decoder_config, self.shared_embedding)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=config.add_lm_head_bias)

        # Initialize weights and apply final processing
        self.post_init()

        # Model parallel
        self.model_parallel = False
        self.device_map = None

    def get_input_embeddings(self):
        return self.shared_embedding

    def set_input_embeddings(self, new_embeddings):
        self.shared_embedding = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)
        self.decoder.set_input_embeddings(new_embeddings)

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def get_output_embeddings(self):
        return self.lm_head

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:

        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,\
            )

        hidden_states = encoder_outputs[0]

        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
            # get decoder inputs from shifting lm labels to the right
            decoder_input_ids = self._shift_right(labels)

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]
        # share embedding and softmax embedding
        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            sequence_output = sequence_output * (self.hidden_size ** -0.5)

        lm_logits = self.lm_head(sequence_output).to(torch.float32)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
            # move labels to correct device to enable PP
            labels = labels.to(lm_logits.device)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        decoder_attention_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        # cut decoder_input_ids if past is used
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]

        return {
            "decoder_input_ids": input_ids,
            "past_key_values": past_key_values,
            "encoder_outputs": encoder_outputs,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,
        }

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return self._shift_right(labels)

    def _reorder_cache(self, past_key_values, beam_idx):
        # if decoder past is not included in output
        # speedy decoding is disabled and no need to reorder
        if past_key_values is None:
            logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
            return past_key_values

        reordered_decoder_past = ()
        for layer_past_states in past_key_values:
            # get the correct batch idx from layer past batch dim
            # batch dim of `past` is at 2nd position
            reordered_layer_past_states = ()
            for layer_past_state in layer_past_states:
                # need to set correct `past` for each of the four key / value states
                reordered_layer_past_states = reordered_layer_past_states + (
                    layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
                )

            if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
                raise ValueError(
                    f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
                )
            if len(reordered_layer_past_states) != len(layer_past_states):
                raise ValueError(
                    f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
                )

            reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
        return reordered_decoder_past