File size: 31,458 Bytes
3d28019 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
from typing import Optional, Tuple, Union
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
BaseModelOutput,
)
from transformers.utils import logging, is_torch_fx_proxy
from .configuration_openba import OpenBAConfig
logger = logging.get_logger(__name__)
# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
def rotate_half(x) -> torch.Tensor:
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
sin = torch.cat((sin, sin), dim=-1).to(tensor.device)[:, :, None, :]
cos = torch.cat((cos, cos), dim=-1).to(tensor.device)[:, :, None, :]
return (tensor * cos) + (rotate_half(tensor) * sin)
class SwiGLUMLP(nn.Module):
def __init__(self, config):
super().__init__()
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
hidden_size = config.hidden_size
# ffn_hidden_size = int(2 * config.ffn_hidden_size / 3)
# ffn_hidden_size = multiple_of * ((ffn_hidden_size + multiple_of - 1) // multiple_of)
ffn_hidden_size=config.ffn_hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.fc_in = nn.Linear(hidden_size, 2 * ffn_hidden_size, bias=config.add_ffn_bias)
self.fc_out = nn.Linear(ffn_hidden_size, hidden_size, bias=config.add_ffn_bias)
def swiglu(x):
x = torch.chunk(x, 2, dim=-1)
return F.silu(x[0]) * x[1]
self.act_func = swiglu
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act_func(hidden_states)
hidden_states = self.fc_out(hidden_states)
return hidden_states
class OpenBAAttention(nn.Module):
def __init__(self, config, attn_type='self'):
super().__init__()
self.attn_type = attn_type
self.is_decoder = config.is_decoder
self.hidden_size = config.hidden_size
self.num_heads = config.num_heads
self.kv_channels = config.kv_channels
self.proj_size = self.kv_channels * self.num_heads
self.dropout = config.attention_dropout
self.scale_attn = torch.sqrt(torch.tensor(self.kv_channels, dtype=torch.float32))
if self.attn_type == 'self':
self.qkv = nn.Linear(self.hidden_size, 3 * self.proj_size, bias=config.add_qkv_bias)
else:
assert self.attn_type == 'cross'
self.q = nn.Linear(self.hidden_size, self.proj_size, bias=config.add_qkv_bias)
self.kv = nn.Linear(self.hidden_size, 2 * self.proj_size, bias=config.add_qkv_bias)
self.rotary_embedding = create_sinusoidal_positions(
num_pos=config.max_seq_length,
dim=self.kv_channels,
)
self.o = nn.Linear(self.proj_size, self.hidden_size, bias=config.add_qkv_bias)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
key_value_states: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
layer_head_mask: Optional[Tuple[torch.Tensor]] = None,
position_ids:Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
# input is (batch_size, seq_length, hidden_size)
batch_size, seq_length = hidden_states.shape[:2]
if past_key_value is not None:
if len(past_key_value) != 2:
raise ValueError(
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
)
if self.rotary_embedding.device != position_ids.device:
self.rotary_embedding = self.rotary_embedding.to(position_ids.device)
if self.attn_type == 'self':
mixed_qkv_states = self.qkv(hidden_states)
new_tensor_shape = mixed_qkv_states.size()[:-1] + (self.num_heads, 3 * self.kv_channels)
mixed_qkv_states = mixed_qkv_states.view(*new_tensor_shape)
query_states, key_states, value_states = torch.chunk(mixed_qkv_states, 3, dim=-1)
# rotary position embedding
sincos = self.rotary_embedding[position_ids]
sin, cos = torch.chunk(sincos, 2, dim=-1)
query_states = apply_rotary_pos_emb(query_states, sin, cos)
key_states = apply_rotary_pos_emb(key_states, sin, cos)
# reshape to (batch_size, num_head, seq_length, kv_channels)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if past_key_value is not None:
past_key_states, past_value_states = past_key_value
key_states = torch.cat([past_key_states, key_states], dim=-2)
value_states = torch.cat([past_value_states, value_states], dim=-2)
else:
assert self.attn_type == 'cross'
query_states = self.q(hidden_states)
new_tensor_shape = query_states.size()[:-1] + (self.num_heads, self.kv_channels)
query_states = query_states.view(*new_tensor_shape)
# reshape to (batch_size, num_head, seq_length, kv_channels)
query_states = query_states.transpose(1, 2)
if past_key_value is None:
mixed_kv_states = self.kv(key_value_states)
new_tensor_shape = mixed_kv_states.size()[:-1] + (self.num_heads, 2 * self.kv_channels)
mixed_kv_states = mixed_kv_states.view(*new_tensor_shape)
key_states, value_states = torch.chunk(mixed_kv_states, 2, dim=-1)
# reshape to (batch_size, num_head, seq_length, kv_channels)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
else:
key_states, value_states = past_key_value
# compute attention score
query_states = query_states.to(torch.float32)
key_states = key_states.to(torch.float32)
attn_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) / self.scale_attn
attn_scores = attn_scores.masked_fill_(attention_mask, -10000.0)
attn_weights = F.softmax(attn_scores, dim=-1).type_as(attn_scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_weights = attn_weights.to(value_states.dtype)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.proj_size)
attn_output = self.o(attn_output)
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
outputs = (attn_output, present_key_value_state)
if output_attentions:
outputs += (attn_weights,)
return outputs
class OpenBABlock(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.dropout = config.hidden_dropout
self.input_layernorm = nn.LayerNorm(config.hidden_size)
self.self_attn = OpenBAAttention(config, attn_type='self')
self.post_attn_layernorm = nn.LayerNorm(config.hidden_size)
if self.is_decoder:
self.inter_attn = OpenBAAttention(config, attn_type='cross')
self.post_inter_attn_layernorm = nn.LayerNorm(config.hidden_size)
self.mlp = SwiGLUMLP(config)
def forward(
self,
hidden_states=None,
attention_mask=None,
position_ids=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
if past_key_value is not None:
if not self.is_decoder:
raise ValueError("`past_key_values` is passed to the encoder. Please make sure this is intended.")
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Self attention.
attn_outputs = self.self_attn(
layernorm_output,
attention_mask=attention_mask,
position_ids=position_ids,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output, present_key_value_state = attn_outputs[:2]
attn_weights = attn_outputs[2:]
residual = hidden_states
# Layer norm post the self attention.
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
layernorm_input = residual + attn_output
layernorm_output = self.post_attn_layernorm(layernorm_input)
if self.is_decoder:
assert encoder_hidden_states is not None
attn_outputs = self.inter_attn(
layernorm_output,
attention_mask=encoder_attention_mask,
key_value_states=encoder_hidden_states,
position_ids=position_ids,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
# residual connection
residual = layernorm_input
layernorm_input = residual + attn_output
layernorm_output = self.post_inter_attn_layernorm(layernorm_input)
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state += attn_outputs[1]
attn_weights += attn_outputs[2:]
# MLP.
mlp_output = self.mlp(layernorm_output)
mlp_output = nn.functional.dropout(mlp_output, p=self.dropout, training=self.training)
# Second residual connection.
residual = layernorm_input
output = residual + mlp_output
outputs = (output,)
if use_cache:
outputs += (present_key_value_state,) + attn_weights
else:
outputs += attn_weights
return outputs
class OpenBAPreTrainedModel(PreTrainedModel):
config_class = OpenBAConfig
base_model_prefix = "transformer"
_no_split_modules = ["OpenBABlock"]
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (OpenBAAttention, OpenBAStack)):
module.gradient_checkpointing = value
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
elif isinstance(module, OpenBAForConditionalGeneration):
module.shared_embedding.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, SwiGLUMLP):
module.fc_in.weight.data.normal_(mean=0.0, std=factor * ((self.config.hidden_size) ** -0.5))
if hasattr(module.fc_in, "bias") and module.fc_in.bias is not None:
module.fc_in.bias.data.zero_()
module.fc_out.weight.data.normal_(mean=0.0, std=factor * ((module.ffn_hidden_size) ** -0.5))
if hasattr(module.fc_out, "bias") and module.fc_out.bias is not None:
module.fc_out.bias.data.zero_()
elif isinstance(module, OpenBAAttention):
hidden_size = self.config.hidden_size
kv_channels = self.config.kv_channels
n_heads = self.config.num_heads
if module.attn_type == 'self':
module.qkv.weight.data[:n_heads * kv_channels].normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5))
module.qkv.weight.data[n_heads * kv_channels:].normal_(mean=0.0, std=factor * (hidden_size ** -0.5))
else:
module.q.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * kv_channels) ** -0.5))
module.kv.weight.data.normal_(mean=0.0, std=factor * (hidden_size ** -0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * kv_channels) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id."
"See T5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class OpenBAStack(OpenBAPreTrainedModel):
def __init__(self, config, embed_tokens):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[OpenBABlock(config) for _ in range(config.num_layers)]
)
self.final_layernorm = nn.LayerNorm(config.hidden_size)
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# get batch size and seq_length
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# required mask seq length can be calculated via length of past
if past_key_values is None:
past_length = 0
past_key_values = [None] * len(self.block)
else:
past_length = past_key_values[0][0].size(-2)
cur_length = past_length + seq_length
# position ids
position_ids = torch.arange(past_length, cur_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
# Attention mask
if attention_mask is None:
attention_mask = torch.ones(batch_size, seq_length, device=device)
# get extended self-attention mask
if self.is_decoder:
if len(attention_mask.shape) == 2:
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
causal_mask = causal_mask.to(attention_mask.dtype)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
elif len(attention_mask.shape) == 3:
extended_attention_mask = attention_mask[:, None, :, :]
else:
raise ValueError
else:
extended_attention_mask = attention_mask[:, None, None, :]
extended_attention_mask = extended_attention_mask < 0.5
# get extended self-attention mask
# here we replace encoder_decoder_attention_mask with encoder_attention_mask
if self.is_decoder and encoder_hidden_states is not None:
if encoder_attention_mask is None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=device, dtype=torch.long
)
extended_encoder_attention_mask = encoder_attention_mask[:, None, None, :]
extended_encoder_attention_mask = extended_encoder_attention_mask < 0.5
else:
extended_encoder_attention_mask = None
# input embeddings
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
hidden_states = inputs_embeds
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_ids=position_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=extended_encoder_attention_mask,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention weights), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
if use_cache:
present_key_value_states += (present_key_value_state,)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[3],)
hidden_states = self.final_layernorm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
class OpenBAForConditionalGeneration(OpenBAPreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
]
def __init__(self, config):
super().__init__(config)
self.shared_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.hidden_size = config.hidden_size
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = OpenBAStack(encoder_config, self.shared_embedding)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
decoder_config.max_seq_length = config.decoder_max_seq_length
self.decoder = OpenBAStack(decoder_config, self.shared_embedding)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=config.add_lm_head_bias)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
def get_input_embeddings(self):
return self.shared_embedding
def set_input_embeddings(self, new_embeddings):
self.shared_embedding = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,\
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# share embedding and softmax embedding
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
sequence_output = sequence_output * (self.hidden_size ** -0.5)
lm_logits = self.lm_head(sequence_output).to(torch.float32)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
decoder_attention_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"decoder_attention_mask": decoder_attention_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past |