File size: 11,123 Bytes
03a425d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
import logging
from collections import OrderedDict
from pkg_resources import packaging
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
import torch.utils.checkpoint as checkpoint
import functools
logger = logging.getLogger(__name__)
# On P1, model extracted from https://huggingface.co/laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K
MODEL_PATH = 'https://huggingface.co/laion'
_MODELS = {
"ViT-L/14": os.path.join(MODEL_PATH, "CLIP-ViT-L-14-DataComp.XL-s13B-b90K", "vit_l14_text.pth"),
"ViT-B/16": os.path.join(MODEL_PATH, "CLIP-ViT-B-16-DataComp.XL-s13B-b90K", "vit_b16_text.pth"),
}
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None,
checkpoint_num: int = 0):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
self.checkpoint_num = checkpoint_num
def forward(self, x: torch.Tensor):
if self.checkpoint_num > 0:
segments = min(self.checkpoint_num, len(self.resblocks))
return checkpoint.checkpoint_sequential(self.resblocks, segments, x)
else:
return self.resblocks(x)
class CLIP_TEXT(nn.Module):
def __init__(
self,
embed_dim: int,
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
checkpoint_num: int,
tokenizer_path:str=None,
):
super().__init__()
self.context_length = context_length
if tokenizer_path:
self._tokenizer = _Tokenizer(tokenizer_path)
else:
self._tokenizer = _Tokenizer()
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask(),
checkpoint_num=checkpoint_num,
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
def no_weight_decay(self):
return {'token_embedding', 'positional_embedding'}
@functools.lru_cache(maxsize=None)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def tokenize(self, texts, context_length=77, truncate=True):
"""
Returns the tokenized representation of given input string(s)
Parameters
----------
texts : Union[str, List[str]]
An input string or a list of input strings to tokenize
context_length : int
The context length to use; all CLIP models use 77 as the context length
truncate: bool
Whether to truncate the text in case its encoding is longer than the context length
Returns
-------
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
"""
if isinstance(texts, str):
texts = [texts]
sot_token = self._tokenizer.encoder["<|startoftext|>"]
eot_token = self._tokenizer.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + self._tokenizer.encode(text) + [eot_token] for text in texts]
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
else:
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate:
tokens = tokens[:context_length]
tokens[-1] = eot_token
else:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
return result
def forward(self, text):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def clip_text_b16(
embed_dim=512,
context_length=77,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
checkpoint_num=0,
pretrained=True,
tokenizer_path:str=None,
):
# raise NotImplementedError
model = CLIP_TEXT(
embed_dim,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
checkpoint_num,
tokenizer_path,
)
# pretrained = _MODELS["ViT-B/16"]
# logger.info(f"Load pretrained weights from {pretrained}")
# state_dict = torch.load(pretrained, map_location='cpu')
# model.load_state_dict(state_dict, strict=False)
# return model.eval()
if pretrained:
if isinstance(pretrained, str) and pretrained != "bert-base-uncased":
pretrained = _MODELS[pretrained]
else:
pretrained = _MODELS["ViT-B/16"]
logger.info(f"Load pretrained weights from {pretrained}")
state_dict = torch.load(pretrained, map_location='cpu')
if context_length != state_dict["positional_embedding"].size(0):
# assert context_length < state_dict["positional_embedding"].size(0), "Cannot increase context length."
print(f"Resize positional embedding from {state_dict['positional_embedding'].size(0)} to {context_length}")
if context_length < state_dict["positional_embedding"].size(0):
state_dict["positional_embedding"] = state_dict["positional_embedding"][:context_length]
else:
state_dict["positional_embedding"] = F.pad(
state_dict["positional_embedding"],
(0, 0, 0, context_length - state_dict["positional_embedding"].size(0)),
value=0,
)
message = model.load_state_dict(state_dict, strict=False)
print(f"Load pretrained weights from {pretrained}: {message}")
return model.eval()
def clip_text_l14(
embed_dim=768,
context_length=77,
vocab_size=49408,
transformer_width=768,
transformer_heads=12,
transformer_layers=12,
checkpoint_num=0,
pretrained=True,
tokenizer_path:str=None,
):
model = CLIP_TEXT(
embed_dim,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
checkpoint_num,
tokenizer_path,
)
if pretrained:
if isinstance(pretrained, str) and pretrained != "bert-base-uncased":
pretrained = _MODELS[pretrained]
else:
pretrained = _MODELS["ViT-L/14"]
logger.info(f"Load pretrained weights from {pretrained}")
state_dict = torch.load(pretrained, map_location='cpu')
if context_length != state_dict["positional_embedding"].size(0):
# assert context_length < state_dict["positional_embedding"].size(0), "Cannot increase context length."
print(f"Resize positional embedding from {state_dict['positional_embedding'].size(0)} to {context_length}")
if context_length < state_dict["positional_embedding"].size(0):
state_dict["positional_embedding"] = state_dict["positional_embedding"][:context_length]
else:
state_dict["positional_embedding"] = F.pad(
state_dict["positional_embedding"],
(0, 0, 0, context_length - state_dict["positional_embedding"].size(0)),
value=0,
)
message = model.load_state_dict(state_dict, strict=False)
print(f"Load pretrained weights from {pretrained}: {message}")
return model.eval()
def clip_text_l14_336(
embed_dim=768,
context_length=77,
vocab_size=49408,
transformer_width=768,
transformer_heads=12,
transformer_layers=12,
):
raise NotImplementedError
model = CLIP_TEXT(
embed_dim,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers
)
pretrained = _MODELS["ViT-L/14_336"]
logger.info(f"Load pretrained weights from {pretrained}")
state_dict = torch.load(pretrained, map_location='cpu')
model.load_state_dict(state_dict, strict=False)
return model.eval()
def build_clip(config):
model_cls = config.text_encoder.clip_teacher
model = eval(model_cls)()
return model
|