File size: 8,454 Bytes
ff495b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig

class EasyDict(dict):
    def __init__(self, d=None, **kwargs):
        if d is None:
            d = {}
        if kwargs:
            d.update(**kwargs)
        for k, v in d.items():
            setattr(self, k, v)
        # Class attributes
        for k in self.__class__.__dict__.keys():
            if not (k.startswith("__") and k.endswith("__")) and not k in ("update", "pop"):
                setattr(self, k, getattr(self, k))

    def __setattr__(self, name, value):
        if isinstance(value, (list, tuple)):
            value = [self.__class__(x) if isinstance(x, dict) else x for x in value]
        elif isinstance(value, dict) and not isinstance(value, self.__class__):
            value = self.__class__(value)
        super(EasyDict, self).__setattr__(name, value)
        super(EasyDict, self).__setitem__(name, value)

    __setitem__ = __setattr__

    def update(self, e=None, **f):
        d = e or dict()
        d.update(f)
        for k in d:
            setattr(self, k, d[k])

    def pop(self, k, d=None):
        if hasattr(self, k):
            delattr(self, k)
        return super(EasyDict, self).pop(k, d)

class InternVideo2Config(PretrainedConfig):
    model_type = "internvideo2"

    def __init__(self,
                 tokenizer=None,
                 train_file=None,
                 test_file=None,
                 test_types=None,
                 num_workers=6,
                 best_key=None,
                 num_frames=8,
                 num_frames_test=8,
                 batch_size=64,
                 batch_size_test=4,
                 max_txt_l=32,
                 inputs=None,
                 text_enc="bert_large",
                 model=None,
                 criterion=None,
                 optimizer=None,
                 scheduler=None,
                 evaluate=False,
                 deep_fusion=False,
                 evaluation=None,
                 use_half_precision=False,
                 use_bf16=True,
                 gradient_checkpointing=True,
                 use_flash_sdp=False,
                 use_mem_efficient_sdp=False,
                 compile_model=False,
                 wandb=None,
                 dist_url="env://",
                 device="cuda",
                 mode="pt",
                 output_dir=None,
                 resume=False,
                 debug=False,
                 log_freq=100,
                 seed=42,
                 save_latest=True,
                 auto_resume=False,
                 jump_evaluate=False,
                 pretrained_path="",
                 save_ckpt_iter=None,
                 delete_ds_optim_states=True,
                 deepspeed=None,
                 **kwargs):
        super().__init__(**kwargs)

        self.tokenizer = tokenizer

        # Data configuration
        self.train_file = train_file or "available_corpus[\"pretrain_example_data_1B\"]"
        self.test_file = EasyDict(test_file or {
            "msrvtt_1k_test": "available_corpus[\"msrvtt_1k_test\"]",
            "didemo_ret_test": "available_corpus[\"didemo_ret_test\"]"
        })
        self.test_types = test_types or ["msrvtt_1k_test", "didemo_ret_test"]
        self.num_workers = num_workers
        self.best_key = best_key or ["msrvtt_1k_test_match", "t2v_r1"]

        # Input configuration
        self.num_frames = num_frames
        self.num_frames_test = num_frames_test
        self.batch_size = batch_size
        self.batch_size_test = batch_size_test
        self.max_txt_l = max_txt_l
        self.inputs = EasyDict(inputs or {
            "image_res": 224,
            "video_input": EasyDict({
                "num_frames": num_frames,
                "sample_type": "rand",
                "num_frames_test": num_frames_test,
                "sample_type_test": "middle",
                "random_aug": False
            }),
            "max_txt_l": EasyDict({"image": max_txt_l, "video": max_txt_l}),
            "batch_size": EasyDict({"image": batch_size, "video": batch_size}),
            "batch_size_test": EasyDict({"image": batch_size_test, "video": batch_size_test})
        })

        # Model configuration
        self.text_enc = text_enc
        self.model = EasyDict(model or {
            "model_cls": "InternVideo2_Stage2",
            "vision_encoder": EasyDict({
                "name": "pretrain_internvideo2_1b_patch14_224",
                "img_size": 224,
                "num_frames": num_frames,
                "tubelet_size": 1,
                "patch_size": 14,
                "d_model": 1408,
                "clip_embed_dim": 768,
                "clip_teacher_embed_dim": 3200,
                "clip_teacher_final_dim": 768,
                "clip_norm_type": "l2",
                "clip_return_layer": 6,
                "clip_student_return_interval": 1,
                "pretrained": None,
                "use_checkpoint": False,
                "checkpoint_num": 40,
                "use_flash_attn": True,
                "use_fused_rmsnorm": True,
                "use_fused_mlp": True,
                "clip_teacher": None,
                "clip_input_resolution": 224,
                "clip_teacher_return_interval": 1,
                "video_mask_type": "random",
                "video_mask_ratio": 0.8,
                "image_mask_type": "random",
                "image_mask_ratio": 0.5,
                "sep_image_video_pos_embed": True,
                "keep_temporal": False,
                "only_mask": True
            }),
            "text_encoder": text_enc,
            "multimodal": EasyDict({"enable": True}),
            "embed_dim": 512,
            "temp": 0.07,
            "find_unused_parameters": False
        })

        # Criterion configuration
        self.criterion = EasyDict(criterion or {
            "loss_weight": EasyDict({
                "vtc": 1.0,
                "mlm": 1.0,
                "vtm": 1.0,
                "mvm": 0.0,
                "uta": 0.0
            }),
            "vtm_hard_neg": True,
            "mlm_masking_prob": 0.5,
            "distill_final_features": True,
            "clip_loss_ratio": [1.0, 1.0]
        })

        # Optimizer configuration
        self.optimizer = EasyDict(optimizer or {
            "opt": "adamW",
            "lr": 5e-5,
            "opt_betas": [0.9, 0.98],
            "weight_decay": 0.05,
            "max_grad_norm": 3.0,
            "different_lr": EasyDict({"enable": False, "module_names": [], "lr": 1e-3})
        })

        # Scheduler configuration
        self.scheduler = EasyDict(scheduler or {
            "sched": "cosine",
            "epochs": 10,
            "min_lr_multi": 0.01,
            "warmup_epochs": 1
        })

        # Evaluation configuration
        self.evaluate = evaluate
        self.deep_fusion = deep_fusion
        self.evaluation = EasyDict(evaluation or {
            "eval_frame_ensemble": "concat",
            "eval_x_only": False,
            "k_test": 128,
            "eval_offload": True
        })

        # Miscellaneous
        self.use_half_precision = use_half_precision
        self.use_bf16 = use_bf16
        self.gradient_checkpointing = gradient_checkpointing
        self.use_flash_sdp = use_flash_sdp
        self.use_mem_efficient_sdp = use_mem_efficient_sdp
        self.compile_model = compile_model

        self.wandb = EasyDict(wandb or {
            "enable": False,
            "entity": "opengvlab",
            "project": "InternVideo2-Stage2"
        })

        self.dist_url = dist_url
        self.device = device
        self.mode = mode
        self.output_dir = output_dir
        self.resume = resume
        self.debug = debug
        self.log_freq = log_freq
        self.seed = seed

        self.save_latest = save_latest
        self.auto_resume = auto_resume
        self.jump_evaluate = jump_evaluate
        self.pretrained_path = pretrained_path
        self.save_ckpt_iter = save_ckpt_iter
        self.delete_ds_optim_states = delete_ds_optim_states

        self.deepspeed = EasyDict(deepspeed or {
            "enable": True,
            "stage": 1
        })
    def set_num_frames(self, num_frames):
        # print('Here ', num_frames)
        self.num_frames = num_frames
        self.inputs.video_input.num_frames = num_frames
        self.model.vision_encoder.num_frames = num_frames