File size: 3,352 Bytes
d35c92d 58b8706 d35c92d 94d2d17 9b19153 eede272 9b19153 ee619e6 58b8706 a11177b 58b8706 191faa6 a393696 94d2d17 9b19153 a11177b 9b19153 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
---
# Model Card for InternViT-6B-224px
## What is InternVL?
\[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\]
InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM.
It is _**the largest open-source vision/vision-language foundation model (14B)**_ to date, achieving _**32 state-of-the-art**_ performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/k5UATwX5W2b5KJBN5C58x.png)
## Model Details
- **Model Type:** vision foundation model, feature backbone
- **Model Stats:**
- Params (M): 5903
- Image size: 224 x 224
- **Pretrain Dataset:** LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
## Linear Probing Performance
See this [document](https://github.com/OpenGVLab/InternVL/tree/main/classification) for more details about the linear probing evaluation.
| IN-1K | IN-ReaL | IN-V2 | IN-A | IN-R | IN-Sketch |
| :---: | :-----: | :---: | :--: | :--: | :-------: |
| 88.2 | 90.4 | 79.9 | 77.5 | 89.8 | 69.1 |
## Model Usage (Image Embeddings)
```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
model = AutoModel.from_pretrained(
'OpenGVLab/InternViT-6B-224px',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).cuda().eval()
image = Image.open('./examples/image1.jpg').convert('RGB')
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-224px')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
outputs = model(pixel_values)
```
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{chen2023internvl,
title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2312.14238},
year={2023}
}
```
## Acknowledgement
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
|