File size: 4,112 Bytes
d35c92d
 
58b8706
 
 
 
 
 
 
a4fa353
d35c92d
94d2d17
bbbad2d
9b19153
084bfb6
a4f7638
084bfb6
9b19153
21541b0
 
 
 
58b8706
a11177b
58b8706
 
 
 
3eb459d
31da47b
191faa6
 
ab5bff1
191faa6
 
 
 
 
a393696
94d2d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b19153
 
 
 
a11177b
9b19153
 
084bfb6
 
 
 
 
 
21541b0
 
 
 
 
 
a4f7638
 
 
 
 
 
084bfb6
 
 
 
 
 
 
9b19153
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
pipeline_tag: image-feature-extraction
---

# InternViT-6B-224px

[\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[πŸ“œ InternVL 1.0\]](https://huggingface.co/papers/2312.14238)  [\[πŸ“œ InternVL 1.5\]](https://huggingface.co/papers/2404.16821)  [\[πŸ“œ Mini-InternVL\]](https://arxiv.org/abs/2410.16261)  [\[πŸ“œ InternVL 2.5\]](https://huggingface.co/papers/2412.05271)

[\[πŸ†• Blog\]](https://internvl.github.io/blog/)  [\[πŸ—¨οΈ Chat Demo\]](https://internvl.opengvlab.com/)  [\[πŸ€— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[πŸš€ Quick Start\]](#quick-start)  [\[πŸ“– Documents\]](https://internvl.readthedocs.io/en/latest/)

<div align="center">
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
</div>

## Model Details
- **Model Type:** vision foundation model, feature backbone
- **Model Stats:**
  - Params (M): 5903
  - Image size: 224 x 224
- **Pretrain Dataset:** LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
- **Note:** This model has 48 blocks, and we found that using the output after the fourth-to-last block worked best for VLLM. Therefore, when building a VLLM with this model, **please use the features from the fourth-to-last layer.**

## Linear Probing Performance

See this [document](https://github.com/OpenGVLab/InternVL/tree/main/classification#-evaluation) for more details about the linear probing evaluation.

| IN-1K | IN-ReaL | IN-V2 | IN-A | IN-R | IN-Sketch |
| :---: | :-----: | :---: | :--: | :--: | :-------: |
| 88.2  |  90.4   | 79.9  | 77.5 | 89.8 |   69.1    |

## Model Usage (Image Embeddings)

```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-6B-224px',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-224px')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)
```

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
```