czczup's picture
Update README.md
d585189 verified
|
raw
history blame
5.55 kB
metadata
license: llama3
pipeline_tag: image-text-to-text
library_name: transformers
base_model: OpenGVLab/InternVL2-Llama3-76B
new_version: OpenGVLab/InternVL2_5-78B-AWQ
base_model_relation: quantized
language:
  - multilingual
tags:
  - internvl
  - custom_code

InternVL2-Llama3-76B-AWQ

[πŸ“‚ GitHub] [πŸ“œ InternVL 1.0] [πŸ“œ InternVL 1.5] [πŸ“œ Mini-InternVL] [πŸ“œ InternVL 2.5]

[πŸ†• Blog] [πŸ—¨οΈ Chat Demo] [πŸ€— HF Demo] [πŸš€ Quick Start] [πŸ“– Documents]

Introduction

INT4 Weight-only Quantization and Deployment (W4A16)

LMDeploy adopts AWQ algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.

LMDeploy supports the following NVIDIA GPU for W4A16 inference:

  • Turing(sm75): 20 series, T4

  • Ampere(sm80,sm86): 30 series, A10, A16, A30, A100

  • Ada Lovelace(sm90): 40 series

Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.

pip install lmdeploy>=0.5.3

This article comprises the following sections:

Inference

Trying the following codes, you can perform the batched offline inference with the quantized model:

from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2-Llama3-76B-AWQ'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
backend_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline(model, backend_config=backend_config, log_level='INFO')
response = pipe(('describe this image', image))
print(response.text)

For more information about the pipeline parameters, please refer to here.

Service

LMDeploy's api_server enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:

lmdeploy serve api_server OpenGVLab/InternVL2-Llama3-76B-AWQ --backend turbomind --server-port 23333 --model-format awq

To use the OpenAI-style interface, you need to install OpenAI:

pip install openai

Then, use the code below to make the API call:

from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=[{
        'role':
        'user',
        'content': [{
            'type': 'text',
            'text': 'describe this image',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
            },
        }],
    }],
    temperature=0.8,
    top_p=0.8)
print(response)

License

This project is released under the MIT License. This project uses the pre-trained Hermes-2-Theta-Llama-3-70B as a component, which is licensed under the Llama 3 Community License.

Citation

If you find this project useful in your research, please consider citing:

@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}