File size: 9,688 Bytes
dcbf85f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - OpenGVLab/InternViT-300M-448px
  - internlm/internlm2_5-7b-chat
new_version: OpenGVLab/InternVL2_5-8B
base_model_relation: merge
language:
  - multilingual
tags:
  - internvl
  - custom_code
---

# InternOmni

## Quick Start

We provide an example code to run `InternOmni` using `transformers`.

> Please use transformers>=4.37.2 to ensure the model works normally.


### Inference with Transformers

```python
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import librosa
from transformers.processing_utils import ProcessorMixin
import torch

class WhisperProcessor(ProcessorMixin):
    attributes = ["feature_extractor"]
    feature_extractor_class = "WhisperFeatureExtractor"
    def __init__(self, feature_extractor):
        super().__init__(feature_extractor)
        self.current_processor = self.feature_extractor
        self._in_target_context_manager = False

    def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
        return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)

    def get_T_after_cnn(self,L_in, dilation=1):
        for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
            L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
            L_out = 1 + L_out // stride
            L_in = L_out
        return L_out

    def __call__(self, *args, **kwargs):
        if self._in_target_context_manager:
            return self.current_processor(*args, **kwargs)

        audio = kwargs.pop("audio", None)
        sampling_rate = kwargs.pop("sampling_rate", 16000)
        text = kwargs.pop("text", None)
        if len(args) > 0:
            audio = args[0]
            args = args[1:]

        if audio is None and text is None:
            raise ValueError("You need to specify either an `audio` or `text` input to process.")

        if audio is not None:
            L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000)  # max_length < 30s
            mel_len = L // 160
            audio_len_after_cnn = self.get_T_after_cnn(mel_len)
            audio_token_num = (audio_len_after_cnn - 2) // 2 + 1
            inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
            inputs['audio_len_after_cnn'] = torch.tensor(audio_len_after_cnn, dtype=torch.long)
            inputs['audio_token_num'] = torch.tensor(audio_token_num, dtype=torch.long)
        if text is not None:
            encodings = self.tokenizer(text, **kwargs)

        if text is None:
            return inputs

        elif audio is None:
            return encodings
        else:
            inputs["labels"] = encodings["input_ids"]
            return inputs

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    def get_prompt_ids(self, text: str, return_tensors="np"):
        return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def load_audio(audio_file, audio_processor):
    audio_values, _ = librosa.load(audio_file, sr=16000) # sample rate should be 16000
    
    audio_process_values = audio_processor(audio_values, sampling_rate=16000, return_tensors="pt")
    input_features = audio_process_values['input_features']
    audio_len_after_cnn = audio_process_values['audio_len_after_cnn']
    audio_token_num = audio_process_values['audio_token_num']
                

    audio_input = {'audio_values': input_features,
                   'audio_len_after_cnn': audio_len_after_cnn,
                   'audio_token_num': audio_token_num,
                   }
    return audio_input

path = 'OpenGVLab/InternOmni'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
audio_processor = WhisperProcessor.from_pretrained(path)
# set the max number of tiles in `max_num`
pixel_values = load_image('./1.jpg', max_num=12).to(torch.bfloat16).cuda()
audio = load_audio('./1.wav', audio_processor)
generation_config = dict(max_new_tokens=1024, do_sample=True)

# question = '请将这段语音识别成文字,并以文字形式展示出来。'
response = model.Audio_chat(tokenizer=tokenizer, pixel_values=pixel_values,audio=audio, question=None, generation_config)
print(f'Assistant: {response}')

```

## License

This project is released under the MIT License. This project uses the pre-trained internVL2_8b as a component, which is licensed under the Apache License 2.0.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
```