Image-to-Text
Chinese
English
File size: 17,977 Bytes
3d7aa36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
from typing import Tuple, Union
import torch
import torch.nn.functional as F
# from .p2i_ops import p2i
import math
from torch import nn


def resize_embedding(embedding_layer, new_size, num_tokens=1, mode='bicubic'):
    """Resize the position embedding in an nn.Embedding layer.

    Args:
        embedding_layer (nn.Embedding): The embedding layer to resize.
        new_size (int): The new size for the positional embedding.
        num_tokens (int): The number of special tokens (e.g., CLS token).
        mode (str): The interpolation mode.

    Returns:
        nn.Embedding: A new embedding layer with resized position embedding.
    """
    # Extract weights from the original embedding layer
    original_weights = embedding_layer.weight.data
    
    # Resize the weights using the provided function
    resized_weights = _resize_pe(original_weights, new_size, mode, num_tokens)
    
    # Create a new embedding layer and initialize it with the resized weights
    new_embedding_layer = nn.Embedding(resized_weights.size(0), resized_weights.size(1))
    new_embedding_layer.weight.data = resized_weights
    
    return new_embedding_layer


def _resize_pe(pe: torch.Tensor, new_size: int, mode: str = 'bicubic', num_tokens: int = 1) -> torch.Tensor:
    """Resize positional embeddings.

    Args: 
        pe (torch.Tensor): A tensor with shape (num_tokens + old_size ** 2, width). pe[0, :] is the CLS token.

    Returns:
        torch.Tensor: A tensor with shape (num_tokens + new_size **2, width).
    """
    l, w = pe.shape
    old_size = int(math.sqrt(l-num_tokens))
    assert old_size ** 2 + num_tokens == l
    return torch.cat([
        pe[:num_tokens, :],
        F.interpolate(pe[num_tokens:, :].reshape(1, old_size, old_size, w).permute(0, 3, 1, 2),
                      (new_size, new_size), mode=mode, align_corners=False).view(w, -1).t()], dim=0)


def normalize_points(points: torch.Tensor, h: int, w: int) -> torch.Tensor:
    """ Normalize coordinates to [0, 1].
    """
    return (points + 0.5) / torch.tensor([[[w, h]]]).to(points)

def denormalize_points(normalized_points: torch.Tensor, h: int, w: int) -> torch.Tensor:
    """ Reverse normalize_points.
    """
    return normalized_points * torch.tensor([[[w, h]]]).to(normalized_points) - 0.5

# def points2heatmap(normalized_points, heatmap_size: Tuple[int, int], kernel_radius: float):
#     """ Normalized points [b x npoints x 2(XY)] -> heatmaps.
#     """
#     batch, npoints, _ = normalized_points.shape
#     out_h, out_w = heatmap_size

#     points = denormalize_points(normalized_points, out_h, out_w)

#     # (batch x npoints) x 1 x h x w
#     heatmap = torch.zeros(
#         batch * npoints, 1, out_h, out_w).to(points)
#     # (batch x npoints) x 2
#     points_flatten = points.view(-1, 2)
#     # (batch x npoints)
#     batch_inds = torch.arange(
#         batch * npoints, dtype=torch.int32).cuda()
#     # (batch x npoints) x 1
#     points_color = torch.ones(
#         points_flatten.size(0), 1).to(points_flatten)
#     # (batch x npoints) x 1 x h x w
#     heatmap = p2i(points_flatten, points_color, batch_inds=batch_inds, background=heatmap,
#                   kernel_radius=kernel_radius,
#                   kernel_kind_str='gaussian_awing', reduce='max')
#     # batch x npoints x h x w
#     heatmap = heatmap.reshape(batch, npoints, out_h, out_w)
#     return heatmap

def heatmap2points(heatmap, t_scale: Union[None, float, torch.Tensor] = None):
    """ Heatmaps -> normalized points [b x npoints x 2(XY)].
    """
    dtype = heatmap.dtype
    _, _, h, w = heatmap.shape

    # 0 ~ h-1, 0 ~ w-1
    yy, xx = torch.meshgrid(
        torch.arange(h).float(),
        torch.arange(w).float())

    yy = yy.view(1, 1, h, w).to(heatmap)
    xx = xx.view(1, 1, h, w).to(heatmap)

    if t_scale is not None:
        heatmap = (heatmap * t_scale).exp()
    heatmap_sum = torch.clamp(heatmap.sum([2, 3]), min=1e-6)

    yy_coord = (yy * heatmap).sum([2, 3]) / heatmap_sum  # b x npoints
    xx_coord = (xx * heatmap).sum([2, 3]) / heatmap_sum  # b x npoints

    points = torch.stack([xx_coord, yy_coord], dim=-1)  # b x npoints x 2

    normalized_points = normalize_points(points, h, w)
    return normalized_points


def _expand_as_rgbs(x):
    _, c, _, _ = x.shape
    if c == 3:
        return [x]

    if c % 3 > 0:
        x = torch.cat([
            x, x[:, [-1], :, :].expand(
                -1, 3 - c % 3, -1, -1)], dim=1)
    c = x.size(1)
    assert c % 3 == 0
    return list(x.split([3] * (c // 3), dim=1))


def _visualize_flags(flags, size, num_flags):
    batch_size = flags.size(0)
    flags = flags.to(dtype=torch.uint8)
    has_what = [flags & torch.full_like(flags, 1 << i)
                for i in range(num_flags)]
    # batch x 1 x 1 x 4
    vis_im = torch.stack(has_what, dim=1).float().view(
        batch_size, 1, 1, num_flags)
    vis_im = F.interpolate(vis_im.expand(-1, 3, -1, -1),
                           size=size, mode='nearest')
    return vis_im


# def visualize_in_row(*data) -> torch.Tensor:
#     """Visualize data in one row.

#     Args:
#         *data (list): A list of (value, modal, [v_min, v_max]) tuples.

#         Each tuple defines the following inputs:

#             value (torch.Tensor): The data value to visualize.
#             modal (str): The modal type string of the data.
#                 Supported data modal types are:

#                 * "BHW", "BNHW", "BHWN" for tensors;
#                 * "flags_{K}" for binary flags, with K being the number of bits;
#                 * "points" for points, where `value` is a tensor with shape [B, N, 2].

#             v_min (float): Optional, to normalize value.
#             v_max (float): Optional, to normalize value.

#     Returns:
#         torch.Tensor: A tensor with shape b x 3 x h x w.
#     """
#     batch = None
#     size = None
#     device = None

#     row = []
#     for v in data:
#         assert isinstance(v, (tuple, list))
#         if len(v) == 2:
#             value, modal = v
#             v_min, v_max = 0.0, 1.0
#         elif len(v) == 4:
#             value, modal, v_min, v_max = v
#         else:
#             raise RuntimeError(
#                 'Input either (value, modal) or (value, modal, v_min, v_max)')

#         if value is None:
#             assert batch is not None
#             assert size is not None
#             assert device is not None
#             value = torch.rand(batch, 1, size[0], size[1], device=device)
#             modal = 'BNHW'
#             v_min, v_max = 0.0, 1.0

#         if modal == 'BHW':
#             assert isinstance(value, torch.Tensor)
#             value = value.detach().float()

#             batch = value.size(0)
#             size = value.shape[1:]
#             device = value.device

#             value = (value - v_min) / (v_max - v_min)
#             row.append(value.unsqueeze(
#                 1).expand(-1, 3, -1, -1))

#         elif modal == 'BNHW':
#             assert isinstance(value, torch.Tensor)
#             value = value.detach().float()

#             batch = value.size(0)
#             size = value.shape[2:]
#             device = value.device

#             value = (value - v_min) / (v_max - v_min)
#             row += _expand_as_rgbs(value)

#         elif modal == 'BHWN':
#             assert isinstance(value, torch.Tensor)
#             value = value.detach().float().permute(0, 3, 1, 2)

#             batch = value.size(0)
#             size = value.shape[2:]
#             device = value.device

#             value = (value - v_min) / (v_max - v_min)
#             row += _expand_as_rgbs(value)

#         elif modal.startswith('flags_'):
#             assert isinstance(value, torch.Tensor)
#             value = value.detach().float()

#             batch = value.size(0)
#             device = value.device

#             num_flags = int(modal.split('_')[1])
#             assert size is not None
#             row.append(_visualize_flags(value, size, num_flags))

#         elif modal == 'points':
#             points, background = value

#             if background is None:
#                 background = torch.rand(
#                     batch, 1, size[0], size[1], device=device)
#             else:
#                 assert isinstance(background, torch.Tensor)
#                 background = background.detach().float()
#                 background = (background - v_min) / (v_max - v_min)

#             if points is None:
#                 canvas = background
#             else:
#                 assert isinstance(points, torch.Tensor)
#                 points = points.detach().float()
#                 points = denormalize_points(
#                     points, background.size(2), background.size(3))

#                 npoints = points.size(1)
#                 batch = background.size(0)
#                 assert points.size(0) == batch
#                 channels = background.size(1)

#                 points = points.reshape(npoints * batch, 2)

#                 point_colors = torch.ones(
#                     npoints * batch, channels, dtype=background.dtype, device=background.device)
#                 batch_inds = torch.arange(batch).unsqueeze(1).expand(-1, npoints).reshape(
#                     npoints * batch).to(dtype=torch.int32, device=background.device)
#                 canvas = p2i(points, point_colors, batch_inds, background, 5)

#             row.append(canvas)

#     return torch.cat(row, dim=-1)


import math
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
    """Decay the learning rate"""
    lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
        
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
    """Warmup the learning rate"""
    lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr    

def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):        
    """Decay the learning rate"""
    lr = max(min_lr, init_lr * (decay_rate**epoch))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr    
        
import numpy as np
import io
import os
import time
from collections import defaultdict, deque
import datetime

import torch
import torch.distributed as dist

class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def global_avg(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {:.4f}".format(name, meter.global_avg)
            )
        return self.delimiter.join(loss_str)    
    
    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))
        

class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self


def compute_acc(logits, label, reduction='mean'):
    ret = (torch.argmax(logits, dim=1) == label).float()
    if reduction == 'none':
        return ret.detach()
    elif reduction == 'mean':
        return ret.mean().item()

def compute_n_params(model, return_str=True):
    tot = 0
    for p in model.parameters():
        w = 1
        for x in p.shape:
            w *= x
        tot += w
    if return_str:
        if tot >= 1e6:
            return '{:.1f}M'.format(tot / 1e6)
        else:
            return '{:.1f}K'.format(tot / 1e3)
    else:
        return tot

def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
    if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print('Not using distributed mode')
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}, word {}): {}'.format(
        args.rank, args.world_size, args.dist_url), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)