File size: 17,977 Bytes
3d7aa36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
from typing import Tuple, Union
import torch
import torch.nn.functional as F
# from .p2i_ops import p2i
import math
from torch import nn
def resize_embedding(embedding_layer, new_size, num_tokens=1, mode='bicubic'):
"""Resize the position embedding in an nn.Embedding layer.
Args:
embedding_layer (nn.Embedding): The embedding layer to resize.
new_size (int): The new size for the positional embedding.
num_tokens (int): The number of special tokens (e.g., CLS token).
mode (str): The interpolation mode.
Returns:
nn.Embedding: A new embedding layer with resized position embedding.
"""
# Extract weights from the original embedding layer
original_weights = embedding_layer.weight.data
# Resize the weights using the provided function
resized_weights = _resize_pe(original_weights, new_size, mode, num_tokens)
# Create a new embedding layer and initialize it with the resized weights
new_embedding_layer = nn.Embedding(resized_weights.size(0), resized_weights.size(1))
new_embedding_layer.weight.data = resized_weights
return new_embedding_layer
def _resize_pe(pe: torch.Tensor, new_size: int, mode: str = 'bicubic', num_tokens: int = 1) -> torch.Tensor:
"""Resize positional embeddings.
Args:
pe (torch.Tensor): A tensor with shape (num_tokens + old_size ** 2, width). pe[0, :] is the CLS token.
Returns:
torch.Tensor: A tensor with shape (num_tokens + new_size **2, width).
"""
l, w = pe.shape
old_size = int(math.sqrt(l-num_tokens))
assert old_size ** 2 + num_tokens == l
return torch.cat([
pe[:num_tokens, :],
F.interpolate(pe[num_tokens:, :].reshape(1, old_size, old_size, w).permute(0, 3, 1, 2),
(new_size, new_size), mode=mode, align_corners=False).view(w, -1).t()], dim=0)
def normalize_points(points: torch.Tensor, h: int, w: int) -> torch.Tensor:
""" Normalize coordinates to [0, 1].
"""
return (points + 0.5) / torch.tensor([[[w, h]]]).to(points)
def denormalize_points(normalized_points: torch.Tensor, h: int, w: int) -> torch.Tensor:
""" Reverse normalize_points.
"""
return normalized_points * torch.tensor([[[w, h]]]).to(normalized_points) - 0.5
# def points2heatmap(normalized_points, heatmap_size: Tuple[int, int], kernel_radius: float):
# """ Normalized points [b x npoints x 2(XY)] -> heatmaps.
# """
# batch, npoints, _ = normalized_points.shape
# out_h, out_w = heatmap_size
# points = denormalize_points(normalized_points, out_h, out_w)
# # (batch x npoints) x 1 x h x w
# heatmap = torch.zeros(
# batch * npoints, 1, out_h, out_w).to(points)
# # (batch x npoints) x 2
# points_flatten = points.view(-1, 2)
# # (batch x npoints)
# batch_inds = torch.arange(
# batch * npoints, dtype=torch.int32).cuda()
# # (batch x npoints) x 1
# points_color = torch.ones(
# points_flatten.size(0), 1).to(points_flatten)
# # (batch x npoints) x 1 x h x w
# heatmap = p2i(points_flatten, points_color, batch_inds=batch_inds, background=heatmap,
# kernel_radius=kernel_radius,
# kernel_kind_str='gaussian_awing', reduce='max')
# # batch x npoints x h x w
# heatmap = heatmap.reshape(batch, npoints, out_h, out_w)
# return heatmap
def heatmap2points(heatmap, t_scale: Union[None, float, torch.Tensor] = None):
""" Heatmaps -> normalized points [b x npoints x 2(XY)].
"""
dtype = heatmap.dtype
_, _, h, w = heatmap.shape
# 0 ~ h-1, 0 ~ w-1
yy, xx = torch.meshgrid(
torch.arange(h).float(),
torch.arange(w).float())
yy = yy.view(1, 1, h, w).to(heatmap)
xx = xx.view(1, 1, h, w).to(heatmap)
if t_scale is not None:
heatmap = (heatmap * t_scale).exp()
heatmap_sum = torch.clamp(heatmap.sum([2, 3]), min=1e-6)
yy_coord = (yy * heatmap).sum([2, 3]) / heatmap_sum # b x npoints
xx_coord = (xx * heatmap).sum([2, 3]) / heatmap_sum # b x npoints
points = torch.stack([xx_coord, yy_coord], dim=-1) # b x npoints x 2
normalized_points = normalize_points(points, h, w)
return normalized_points
def _expand_as_rgbs(x):
_, c, _, _ = x.shape
if c == 3:
return [x]
if c % 3 > 0:
x = torch.cat([
x, x[:, [-1], :, :].expand(
-1, 3 - c % 3, -1, -1)], dim=1)
c = x.size(1)
assert c % 3 == 0
return list(x.split([3] * (c // 3), dim=1))
def _visualize_flags(flags, size, num_flags):
batch_size = flags.size(0)
flags = flags.to(dtype=torch.uint8)
has_what = [flags & torch.full_like(flags, 1 << i)
for i in range(num_flags)]
# batch x 1 x 1 x 4
vis_im = torch.stack(has_what, dim=1).float().view(
batch_size, 1, 1, num_flags)
vis_im = F.interpolate(vis_im.expand(-1, 3, -1, -1),
size=size, mode='nearest')
return vis_im
# def visualize_in_row(*data) -> torch.Tensor:
# """Visualize data in one row.
# Args:
# *data (list): A list of (value, modal, [v_min, v_max]) tuples.
# Each tuple defines the following inputs:
# value (torch.Tensor): The data value to visualize.
# modal (str): The modal type string of the data.
# Supported data modal types are:
# * "BHW", "BNHW", "BHWN" for tensors;
# * "flags_{K}" for binary flags, with K being the number of bits;
# * "points" for points, where `value` is a tensor with shape [B, N, 2].
# v_min (float): Optional, to normalize value.
# v_max (float): Optional, to normalize value.
# Returns:
# torch.Tensor: A tensor with shape b x 3 x h x w.
# """
# batch = None
# size = None
# device = None
# row = []
# for v in data:
# assert isinstance(v, (tuple, list))
# if len(v) == 2:
# value, modal = v
# v_min, v_max = 0.0, 1.0
# elif len(v) == 4:
# value, modal, v_min, v_max = v
# else:
# raise RuntimeError(
# 'Input either (value, modal) or (value, modal, v_min, v_max)')
# if value is None:
# assert batch is not None
# assert size is not None
# assert device is not None
# value = torch.rand(batch, 1, size[0], size[1], device=device)
# modal = 'BNHW'
# v_min, v_max = 0.0, 1.0
# if modal == 'BHW':
# assert isinstance(value, torch.Tensor)
# value = value.detach().float()
# batch = value.size(0)
# size = value.shape[1:]
# device = value.device
# value = (value - v_min) / (v_max - v_min)
# row.append(value.unsqueeze(
# 1).expand(-1, 3, -1, -1))
# elif modal == 'BNHW':
# assert isinstance(value, torch.Tensor)
# value = value.detach().float()
# batch = value.size(0)
# size = value.shape[2:]
# device = value.device
# value = (value - v_min) / (v_max - v_min)
# row += _expand_as_rgbs(value)
# elif modal == 'BHWN':
# assert isinstance(value, torch.Tensor)
# value = value.detach().float().permute(0, 3, 1, 2)
# batch = value.size(0)
# size = value.shape[2:]
# device = value.device
# value = (value - v_min) / (v_max - v_min)
# row += _expand_as_rgbs(value)
# elif modal.startswith('flags_'):
# assert isinstance(value, torch.Tensor)
# value = value.detach().float()
# batch = value.size(0)
# device = value.device
# num_flags = int(modal.split('_')[1])
# assert size is not None
# row.append(_visualize_flags(value, size, num_flags))
# elif modal == 'points':
# points, background = value
# if background is None:
# background = torch.rand(
# batch, 1, size[0], size[1], device=device)
# else:
# assert isinstance(background, torch.Tensor)
# background = background.detach().float()
# background = (background - v_min) / (v_max - v_min)
# if points is None:
# canvas = background
# else:
# assert isinstance(points, torch.Tensor)
# points = points.detach().float()
# points = denormalize_points(
# points, background.size(2), background.size(3))
# npoints = points.size(1)
# batch = background.size(0)
# assert points.size(0) == batch
# channels = background.size(1)
# points = points.reshape(npoints * batch, 2)
# point_colors = torch.ones(
# npoints * batch, channels, dtype=background.dtype, device=background.device)
# batch_inds = torch.arange(batch).unsqueeze(1).expand(-1, npoints).reshape(
# npoints * batch).to(dtype=torch.int32, device=background.device)
# canvas = p2i(points, point_colors, batch_inds, background, 5)
# row.append(canvas)
# return torch.cat(row, dim=-1)
import math
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
"""Decay the learning rate"""
lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
"""Warmup the learning rate"""
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
"""Decay the learning rate"""
lr = max(min_lr, init_lr * (decay_rate**epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
import numpy as np
import io
import os
import time
from collections import defaultdict, deque
import datetime
import torch
import torch.distributed as dist
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def global_avg(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {:.4f}".format(name, meter.global_avg)
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def compute_acc(logits, label, reduction='mean'):
ret = (torch.argmax(logits, dim=1) == label).float()
if reduction == 'none':
return ret.detach()
elif reduction == 'mean':
return ret.mean().item()
def compute_n_params(model, return_str=True):
tot = 0
for p in model.parameters():
w = 1
for x in p.shape:
w *= x
tot += w
if return_str:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}, word {}): {}'.format(
args.rank, args.world_size, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
|