File size: 8,327 Bytes
5cd2624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
---
language: en
license: apache-2.0
library_name: pytorch
tags:
- deep-reinforcement-learning
- reinforcement-learning
- DI-engine
- Pendulum-v1
benchmark_name: OpenAI/Gym/ClassicControl
task_name: Pendulum-v1
pipeline_tag: reinforcement-learning
model-index:
- name: PG
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: OpenAI/Gym/ClassicControl-Pendulum-v1
type: OpenAI/Gym/ClassicControl-Pendulum-v1
metrics:
- type: mean_reward
value: -183.7 +/- 135.03
name: mean_reward
---
# Play **Pendulum-v1** with **PG** Policy
## Model Description
<!-- Provide a longer summary of what this model is. -->
This is a simple **PG** implementation to OpenAI/Gym/ClassicControl **Pendulum-v1** using the [DI-engine library](https://github.com/opendilab/di-engine) and the [DI-zoo](https://github.com/opendilab/DI-engine/tree/main/dizoo).
**DI-engine** is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported by reusing different abstraction levels of DI-engine reinforcement learning framework.
## Model Usage
### Install the Dependencies
<details close>
<summary>(Click for Details)</summary>
```shell
# install huggingface_ding
git clone https://github.com/opendilab/huggingface_ding.git
pip3 install -e ./huggingface_ding/
# install environment dependencies if needed
pip3 install DI-engine[common_env]
```
</details>
### Git Clone from Huggingface and Run the Model
<details close>
<summary>(Click for Details)</summary>
```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
from ding.bonus import PGAgent
from ding.config import Config
from easydict import EasyDict
import torch
# Pull model from files which are git cloned from huggingface
policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
cfg = EasyDict(Config.file_to_dict("policy_config.py"))
# Instantiate the agent
agent = PGAgent(
env="pendulum", exp_name="Pendulum-v1-PG", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
)
# Continue training
agent.train(step=5000)
# Render the new agent performance
agent.deploy(enable_save_replay=True)
```
</details>
### Run Model by Using Huggingface_ding
<details close>
<summary>(Click for Details)</summary>
```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
from ding.bonus import PGAgent
from huggingface_ding import pull_model_from_hub
# Pull model from Hugggingface hub
policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/Pendulum-v1-PG")
# Instantiate the agent
agent = PGAgent(
env="pendulum", exp_name="Pendulum-v1-PG", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
)
# Continue training
agent.train(step=5000)
# Render the new agent performance
agent.deploy(enable_save_replay=True)
```
</details>
## Model Training
### Train the Model and Push to Huggingface_hub
<details close>
<summary>(Click for Details)</summary>
```shell
#Training Your Own Agent
python3 -u train.py
```
**train.py**
```python
from ding.bonus import PGAgent
from huggingface_ding import push_model_to_hub
# Instantiate the agent
agent = PGAgent(env="pendulum", exp_name="Pendulum-v1-PG")
# Train the agent
return_ = agent.train(step=int(5000000))
# Push model to huggingface hub
push_model_to_hub(
agent=agent.best,
env_name="OpenAI/Gym/ClassicControl",
task_name="Pendulum-v1",
algo_name="PG",
wandb_url=return_.wandb_url,
github_repo_url="https://github.com/opendilab/DI-engine",
github_doc_model_url="https://di-engine-docs.readthedocs.io/en/latest/12_policies/pg.html",
github_doc_env_url="https://di-engine-docs.readthedocs.io/en/latest/13_envs/pendulum.html",
installation_guide="pip3 install DI-engine[common_env]",
usage_file_by_git_clone="./pg/pendulum_pg_deploy.py",
usage_file_by_huggingface_ding="./pg/pendulum_pg_download.py",
train_file="./pg/pendulum_pg.py",
repo_id="OpenDILabCommunity/Pendulum-v1-PG"
)
```
</details>
**Configuration**
<details close>
<summary>(Click for Details)</summary>
```python
exp_config = {
'env': {
'manager': {
'episode_num': float("inf"),
'max_retry': 1,
'retry_type': 'reset',
'auto_reset': True,
'step_timeout': None,
'reset_timeout': None,
'retry_waiting_time': 0.1,
'cfg_type': 'BaseEnvManagerDict'
},
'stop_value': -200,
'n_evaluator_episode': 5,
'collector_env_num': 8,
'evaluator_env_num': 5,
'act_scale': True
},
'policy': {
'model': {
'action_space': 'continuous',
'obs_shape': 3,
'action_shape': 1
},
'learn': {
'learner': {
'train_iterations': 1000000000,
'dataloader': {
'num_workers': 0
},
'log_policy': True,
'hook': {
'load_ckpt_before_run': '',
'log_show_after_iter': 100,
'save_ckpt_after_iter': 10000,
'save_ckpt_after_run': True
},
'cfg_type': 'BaseLearnerDict'
},
'batch_size': 200,
'learning_rate': 0.001,
'entropy_weight': 0.001,
'grad_norm': 5,
'ignore_done': False
},
'collect': {
'collector': {
'get_train_sample': True
},
'unroll_len': 1,
'discount_factor': 0.99,
'n_episode': 20
},
'eval': {
'evaluator': {
'eval_freq': 200,
'render': {
'render_freq': -1,
'mode': 'train_iter'
},
'cfg_type': 'InteractionSerialEvaluatorDict',
'stop_value': -200,
'n_episode': 5
}
},
'other': {
'replay_buffer': {}
},
'on_policy': True,
'cuda': False,
'multi_gpu': False,
'bp_update_sync': True,
'traj_len_inf': False,
'type': 'pg',
'action_space': 'continuous',
'deterministic_eval': True,
'cfg_type': 'PGPolicyDict'
},
'exp_name': 'Pendulum-v1-PG',
'seed': 0,
'wandb_logger': {
'gradient_logger': True,
'video_logger': True,
'plot_logger': True,
'action_logger': True,
'return_logger': False
}
}
```
</details>
**Training Procedure**
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zhangpaipai/Pendulum-v1-PG)
## Model Information
<!-- Provide the basic links for the model. -->
- **Github Repository:** [repo link](https://github.com/opendilab/DI-engine)
- **Doc**: [DI-engine-docs Algorithm link](https://di-engine-docs.readthedocs.io/en/latest/12_policies/pg.html)
- **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/Pendulum-v1-PG/blob/main/policy_config.py)
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/Pendulum-v1-PG/blob/main/replay.mp4)
<!-- Provide the size information for the model. -->
- **Parameters total size:** 115.26 KB
- **Last Update Date:** 2023-06-02
## Environments
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
- **Benchmark:** OpenAI/Gym/ClassicControl
- **Task:** Pendulum-v1
- **Gym version:** 0.25.1
- **DI-engine version:** v0.4.7
- **PyTorch version:** 1.7.1
- **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/pendulum.html)
|