File size: 8,057 Bytes
6340080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
Long Short Term Memory (LSTM) <link https://ieeexplore.ieee.org/abstract/document/6795963 link> is a kind of recurrent neural network that can capture long-short term information.
This document mainly includes:
- Pytorch implementation for LSTM.
- An example to test LSTM.
For beginners, you can refer to <link https://zhuanlan.zhihu.com/p/32085405 link> to learn the basics about how LSTM works.
"""
from typing import Optional, Union, Tuple, List, Dict
import math
import torch
import torch.nn as nn
from ding.torch_utils import build_normalization


class LSTM(nn.Module):
    """
    **Overview:**
        Implementation of LSTM cell with layer norm.
    """

    def __init__(
            self,
            input_size: int,
            hidden_size: int,
            num_layers: int,
            norm_type: Optional[str] = 'LN',
            dropout: float = 0.
    ) -> None:
        # Initialize arguments.
        super(LSTM, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        # Initialize normalization functions.
        norm_func = build_normalization(norm_type)
        self.norm = nn.ModuleList([norm_func(hidden_size * 4) for _ in range(2 * num_layers)])
        # Initialize LSTM parameters.
        self.wx = nn.ParameterList()
        self.wh = nn.ParameterList()
        dims = [input_size] + [hidden_size] * num_layers
        for l in range(num_layers):
            self.wx.append(nn.Parameter(torch.zeros(dims[l], dims[l + 1] * 4)))
            self.wh.append(nn.Parameter(torch.zeros(hidden_size, hidden_size * 4)))
        self.bias = nn.Parameter(torch.zeros(num_layers, hidden_size * 4))
        # Initialize the Dropout Layer.
        self.use_dropout = dropout > 0.
        if self.use_dropout:
            self.dropout = nn.Dropout(dropout)
        self._init()

    # Dealing with different types of input and return preprocessed prev_state.
    def _before_forward(self, inputs: torch.Tensor, prev_state: Union[None, List[Dict]]) -> torch.Tensor:
        seq_len, batch_size = inputs.shape[:2]
        # If prev_state is None, it indicates that this is the beginning of a sequence. In this case, prev_state will be initialized as zero.
        if prev_state is None:
            zeros = torch.zeros(self.num_layers, batch_size, self.hidden_size, dtype=inputs.dtype, device=inputs.device)
            prev_state = (zeros, zeros)
        # If prev_state is not None, then preprocess it into one batch.
        else:
            assert len(prev_state) == batch_size
            state = [[v for v in prev.values()] for prev in prev_state]
            state = list(zip(*state))
            prev_state = [torch.cat(t, dim=1) for t in state]

        return prev_state

    def _init(self):
        # Initialize parameters. Each parameter is initialized using a uniform distribution of: $$U(-\sqrt {\frac 1 {HiddenSize}}, -\sqrt {\frac 1 {HiddenSize}})$$
        gain = math.sqrt(1. / self.hidden_size)
        for l in range(self.num_layers):
            torch.nn.init.uniform_(self.wx[l], -gain, gain)
            torch.nn.init.uniform_(self.wh[l], -gain, gain)
            if self.bias is not None:
                torch.nn.init.uniform_(self.bias[l], -gain, gain)

    def forward(
            self,
            inputs: torch.Tensor,
            prev_state: torch.Tensor,
    ) -> Tuple[torch.Tensor, Union[torch.Tensor, list]]:
        # The shape of input is: [sequence length, batch size, input size]
        seq_len, batch_size = inputs.shape[:2]
        prev_state = self._before_forward(inputs, prev_state)

        H, C = prev_state
        x = inputs
        next_state = []
        for l in range(self.num_layers):
            h, c = H[l], C[l]
            new_x = []
            for s in range(seq_len):
                # Calculate $$z, z^i, z^f, z^o$$ simultaneously.
                gate = self.norm[l * 2](torch.matmul(x[s], self.wx[l])
                                        ) + self.norm[l * 2 + 1](torch.matmul(h, self.wh[l]))
                if self.bias is not None:
                    gate += self.bias[l]
                gate = list(torch.chunk(gate, 4, dim=1))
                i, f, o, z = gate
                # $$z^i = \sigma (Wx^ix^t + Wh^ih^{t-1})$$
                i = torch.sigmoid(i)
                # $$z^f = \sigma (Wx^fx^t + Wh^fh^{t-1})$$
                f = torch.sigmoid(f)
                # $$z^o = \sigma (Wx^ox^t + Wh^oh^{t-1})$$
                o = torch.sigmoid(o)
                # $$z = tanh(Wxx^t + Whh^{t-1})$$
                z = torch.tanh(z)
                # $$c^t = z^f \odot c^{t-1}+z^i \odot z$$
                c = f * c + i * z
                # $$h^t = z^o \odot tanh(c^t)$$
                h = o * torch.tanh(c)
                new_x.append(h)
            next_state.append((h, c))
            x = torch.stack(new_x, dim=0)
            # Dropout layer.
            if self.use_dropout and l != self.num_layers - 1:
                x = self.dropout(x)
        next_state = [torch.stack(t, dim=0) for t in zip(*next_state)]
        # Return list type, split the next_state .
        h, c = next_state
        batch_size = h.shape[1]
        # Split h with shape [num_layers, batch_size, hidden_size] to a list with length batch_size and each element is a tensor with shape [num_layers, 1, hidden_size]. The same operation is performed on c.
        next_state = [torch.chunk(h, batch_size, dim=1), torch.chunk(c, batch_size, dim=1)]
        next_state = list(zip(*next_state))
        next_state = [{k: v for k, v in zip(['h', 'c'], item)} for item in next_state]
        return x, next_state


def pack_data(data: List[torch.Tensor], traj_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Overview:
        You need to pack variable-length data to regular tensor, return tensor and corresponding mask.
        If len(data_i) < traj_len, use `null_padding`,
        else split the whole sequences info different trajectories.
    Returns:
        - tensor (:obj:`torch.Tensor`): dtype (torch.float32), shape (traj_len, B, N)
        - mask (:obj:`torch.Tensor`): dtype (torch.float32), shape (traj_len, B)
    """
    new_data = []
    mask = []
    for item in data:
        D, N = item.shape
        if D < traj_len:
            null_padding = torch.zeros(traj_len - D, N)
            new_item = torch.cat([item, null_padding])
            new_data.append(new_item)
            item_mask = torch.ones(traj_len)
            item_mask[D:].zero_()
            mask.append(item_mask)
        else:
            for i in range(0, D, traj_len):
                item_mask = torch.ones(traj_len)
                new_item = item[i:i + traj_len]
                if new_item.shape[0] < traj_len:
                    new_item = item[-traj_len:]
                new_data.append(new_item)
                mask.append(torch.ones(traj_len))
    new_data = torch.stack(new_data, dim=1)
    mask = torch.stack(mask, dim=1)

    return new_data, mask


def test_lstm():
    seq_len_list = [32, 49, 24, 78, 45]
    traj_len = 32
    N = 10
    hidden_size = 32
    num_layers = 2

    variable_len_data = [torch.rand(s, N) for s in seq_len_list]
    input_, mask = pack_data(variable_len_data, traj_len)
    assert isinstance(input_, torch.Tensor), type(input_)
    batch_size = input_.shape[1]
    assert batch_size == 9, "packed data must have 9 trajectories"
    lstm = LSTM(N, hidden_size=hidden_size, num_layers=num_layers, norm_type='LN', dropout=0.1)

    prev_state = None
    for s in range(traj_len):
        input_step = input_[s:s + 1]
        output, prev_state = lstm(input_step, prev_state)

    assert output.shape == (1, batch_size, hidden_size)
    assert len(prev_state) == batch_size
    assert prev_state[0]['h'].shape == (num_layers, 1, hidden_size)
    loss = (output * mask.unsqueeze(-1)).mean()
    loss.backward()
    for _, m in lstm.named_parameters():
        assert isinstance(m.grad, torch.Tensor)
    print('finished')


if __name__ == '__main__':
    test_lstm()