zjowowen's picture
Upload README.md with huggingface_hub
fc70cd1 verified
|
raw
history blame
13.3 kB
---
language: en
library_name: pytorch
license: apache-2.0
pipeline_tag: reinforcement-learning
tags:
- reinforcement-learning
- Generative Model
- GenerativeRL
- LunarLanderContinuous-v2
benchmark_name: Box2d
task_name: LunarLanderContinuous-v2
model-index:
- name: QGPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLanderContinuous-v2
type: LunarLanderContinuous-v2
metrics:
- type: mean_reward
value: '200.0'
name: mean_reward
verified: false
---
# Play **LunarLanderContinuous-v2** with **QGPO** Policy
## Model Description
<!-- Provide a longer summary of what this model is. -->
This implementation applies **QGPO** to the Box2d **LunarLanderContinuous-v2** environment using [GenerativeRL](https://github.com/opendilab/di-engine).
## Model Usage
### Install the Dependencies
<details close>
<summary>(Click for Details)</summary>
```shell
# install GenerativeRL with huggingface support
pip3 install GenerativeRL[huggingface]
# install environment dependencies if needed
pip3 install gym[box2d]==0.23.1
```
</details>
### Download Model from Huggingface and Run the Model
<details close>
<summary>(Click for Details)</summary>
```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
import gym
from grl.algorithms.qgpo import QGPOAlgorithm
from grl.datasets import QGPOCustomizedTensorDictDataset
from grl.utils.huggingface import pull_model_from_hub
def qgpo_pipeline():
policy_state_dict, config = pull_model_from_hub(
repo_id="zjowowen/LunarLanderContinuous-v2-QGPO",
)
qgpo = QGPOAlgorithm(
config,
dataset=QGPOCustomizedTensorDictDataset(
numpy_data_path="./data.npz",
action_augment_num=config.train.parameter.action_augment_num,
),
)
qgpo.model.load_state_dict(policy_state_dict)
# ---------------------------------------
# Customized train code ↓
# ---------------------------------------
# qgpo.train()
# ---------------------------------------
# Customized train code ↑
# ---------------------------------------
# ---------------------------------------
# Customized deploy code ↓
# ---------------------------------------
agent = qgpo.deploy()
env = gym.make(config.deploy.env.env_id)
observation = env.reset()
images = [env.render(mode="rgb_array")]
for _ in range(config.deploy.num_deploy_steps):
observation, reward, done, _ = env.step(agent.act(observation))
image = env.render(mode="rgb_array")
images.append(image)
# save images into mp4 files
import imageio.v3 as imageio
import numpy as np
images = np.array(images)
imageio.imwrite("replay.mp4", images, fps=30, quality=8)
# ---------------------------------------
# Customized deploy code ↑
# ---------------------------------------
if __name__ == "__main__":
qgpo_pipeline()
```
</details>
## Model Training
### Train the Model and Push to Huggingface_hub
<details close>
<summary>(Click for Details)</summary>
```shell
#Training Your Own Agent
python3 -u train.py
```
**train.py**
```python
import gym
from grl.algorithms.qgpo import QGPOAlgorithm
from grl.datasets import QGPOCustomizedTensorDictDataset
from grl.utils.log import log
from grl_pipelines.diffusion_model.configurations.lunarlander_continuous_qgpo import (
config,
)
def qgpo_pipeline(config):
qgpo = QGPOAlgorithm(
config,
dataset=QGPOCustomizedTensorDictDataset(
numpy_data_path="./data.npz",
action_augment_num=config.train.parameter.action_augment_num,
),
)
# ---------------------------------------
# Customized train code ↓
# ---------------------------------------
qgpo.train()
# ---------------------------------------
# Customized train code ↑
# ---------------------------------------
# ---------------------------------------
# Customized deploy code ↓
# ---------------------------------------
agent = qgpo.deploy()
env = gym.make(config.deploy.env.env_id)
observation = env.reset()
for _ in range(config.deploy.num_deploy_steps):
env.render()
observation, reward, done, _ = env.step(agent.act(observation))
# ---------------------------------------
# Customized deploy code ↑
# ---------------------------------------
if __name__ == "__main__":
log.info("config: \n{}".format(config))
qgpo_pipeline(config)
```
</details>
**Configuration**
<details close>
<summary>(Click for Details)</summary>
```python
{'train': {'project': 'LunarLanderContinuous-v2-QGPO-VPSDE', 'device': 'cuda', 'wandb': {'project': 'IQL-LunarLanderContinuous-v2-QGPO-VPSDE'}, 'simulator': {'type': 'GymEnvSimulator', 'args': {'env_id': 'LunarLanderContinuous-v2'}}, 'model': {'QGPOPolicy': {'device': 'cuda', 'critic': {'device': 'cuda', 'q_alpha': 1.0, 'DoubleQNetwork': {'backbone': {'type': 'ConcatenateMLP', 'args': {'hidden_sizes': [10, 256, 256], 'output_size': 1, 'activation': 'relu'}}}}, 'diffusion_model': {'device': 'cuda', 'x_size': 2, 'alpha': 1.0, 'solver': {'type': 'DPMSolver', 'args': {'order': 2, 'device': 'cuda', 'steps': 17}}, 'path': {'type': 'linear_vp_sde', 'beta_0': 0.1, 'beta_1': 20.0}, 'reverse_path': {'type': 'linear_vp_sde', 'beta_0': 0.1, 'beta_1': 20.0}, 'model': {'type': 'noise_function', 'args': {'t_encoder': {'type': 'GaussianFourierProjectionTimeEncoder', 'args': {'embed_dim': 32, 'scale': 30.0}}, 'backbone': {'type': 'TemporalSpatialResidualNet', 'args': {'hidden_sizes': [512, 256, 128], 'output_dim': 2, 't_dim': 32, 'condition_dim': 8, 'condition_hidden_dim': 32, 't_condition_hidden_dim': 128}}}}, 'energy_guidance': {'t_encoder': {'type': 'GaussianFourierProjectionTimeEncoder', 'args': {'embed_dim': 32, 'scale': 30.0}}, 'backbone': {'type': 'ConcatenateMLP', 'args': {'hidden_sizes': [42, 256, 256], 'output_size': 1, 'activation': 'silu'}}}}}}, 'parameter': {'behaviour_policy': {'batch_size': 1024, 'learning_rate': 0.0001, 'epochs': 500}, 'action_augment_num': 16, 'fake_data_t_span': None, 'energy_guided_policy': {'batch_size': 256}, 'critic': {'stop_training_epochs': 500, 'learning_rate': 0.0001, 'discount_factor': 0.99, 'update_momentum': 0.005}, 'energy_guidance': {'epochs': 1000, 'learning_rate': 0.0001}, 'evaluation': {'evaluation_interval': 50, 'guidance_scale': [0.0, 1.0, 2.0]}, 'checkpoint_path': './LunarLanderContinuous-v2-QGPO'}}, 'deploy': {'device': 'cuda', 'env': {'env_id': 'LunarLanderContinuous-v2', 'seed': 0}, 'num_deploy_steps': 1000, 't_span': None}}
```
```json
{
"train": {
"project": "LunarLanderContinuous-v2-QGPO-VPSDE",
"device": "cuda",
"wandb": {
"project": "IQL-LunarLanderContinuous-v2-QGPO-VPSDE"
},
"simulator": {
"type": "GymEnvSimulator",
"args": {
"env_id": "LunarLanderContinuous-v2"
}
},
"model": {
"QGPOPolicy": {
"device": "cuda",
"critic": {
"device": "cuda",
"q_alpha": 1.0,
"DoubleQNetwork": {
"backbone": {
"type": "ConcatenateMLP",
"args": {
"hidden_sizes": [
10,
256,
256
],
"output_size": 1,
"activation": "relu"
}
}
}
},
"diffusion_model": {
"device": "cuda",
"x_size": 2,
"alpha": 1.0,
"solver": {
"type": "DPMSolver",
"args": {
"order": 2,
"device": "cuda",
"steps": 17
}
},
"path": {
"type": "linear_vp_sde",
"beta_0": 0.1,
"beta_1": 20.0
},
"reverse_path": {
"type": "linear_vp_sde",
"beta_0": 0.1,
"beta_1": 20.0
},
"model": {
"type": "noise_function",
"args": {
"t_encoder": {
"type": "GaussianFourierProjectionTimeEncoder",
"args": {
"embed_dim": 32,
"scale": 30.0
}
},
"backbone": {
"type": "TemporalSpatialResidualNet",
"args": {
"hidden_sizes": [
512,
256,
128
],
"output_dim": 2,
"t_dim": 32,
"condition_dim": 8,
"condition_hidden_dim": 32,
"t_condition_hidden_dim": 128
}
}
}
},
"energy_guidance": {
"t_encoder": {
"type": "GaussianFourierProjectionTimeEncoder",
"args": {
"embed_dim": 32,
"scale": 30.0
}
},
"backbone": {
"type": "ConcatenateMLP",
"args": {
"hidden_sizes": [
42,
256,
256
],
"output_size": 1,
"activation": "silu"
}
}
}
}
}
},
"parameter": {
"behaviour_policy": {
"batch_size": 1024,
"learning_rate": 0.0001,
"epochs": 500
},
"action_augment_num": 16,
"fake_data_t_span": null,
"energy_guided_policy": {
"batch_size": 256
},
"critic": {
"stop_training_epochs": 500,
"learning_rate": 0.0001,
"discount_factor": 0.99,
"update_momentum": 0.005
},
"energy_guidance": {
"epochs": 1000,
"learning_rate": 0.0001
},
"evaluation": {
"evaluation_interval": 50,
"guidance_scale": [
0.0,
1.0,
2.0
]
},
"checkpoint_path": "./LunarLanderContinuous-v2-QGPO"
}
},
"deploy": {
"device": "cuda",
"env": {
"env_id": "LunarLanderContinuous-v2",
"seed": 0
},
"num_deploy_steps": 1000,
"t_span": null
}
}
```
</details>
**Training Procedure**
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/IQL-LunarLanderContinuous-v2-QGPO-VPSDE)
## Model Information
<!-- Provide the basic links for the model. -->
- **Github Repository:** [repo link](https://github.com/opendilab/GenerativeRL/)
- **Doc**: [Algorithm link](https://opendilab.github.io/GenerativeRL/)
- **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/LunarLanderContinuous-v2-QGPO/blob/main/policy_config.json)
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLanderContinuous-v2-QGPO/blob/main/replay.mp4)
<!-- Provide the size information for the model. -->
- **Parameters total size:** 8799.79 KB
- **Last Update Date:** 2024-12-04
## Environments
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
- **Benchmark:** Box2d
- **Task:** LunarLanderContinuous-v2
- **Gym version:** 0.23.1
- **GenerativeRL version:** v0.0.1
- **PyTorch version:** 2.4.1+cu121
- **Doc**: [Environments link](https://www.gymlibrary.dev/environments/box2d/lunar_lander/)