File size: 13,284 Bytes
fc70cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
---
language: en
library_name: pytorch
license: apache-2.0
pipeline_tag: reinforcement-learning
tags:
- reinforcement-learning
- Generative Model
- GenerativeRL
- LunarLanderContinuous-v2
benchmark_name: Box2d
task_name: LunarLanderContinuous-v2
model-index:
- name: QGPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: LunarLanderContinuous-v2
      type: LunarLanderContinuous-v2
    metrics:
    - type: mean_reward
      value: '200.0'
      name: mean_reward
      verified: false
---

# Play **LunarLanderContinuous-v2** with **QGPO** Policy

## Model Description
<!-- Provide a longer summary of what this model is. -->

This implementation applies **QGPO** to the Box2d **LunarLanderContinuous-v2** environment using [GenerativeRL](https://github.com/opendilab/di-engine).



## Model Usage
### Install the Dependencies
<details close>
<summary>(Click for Details)</summary>

```shell
# install GenerativeRL with huggingface support
pip3 install GenerativeRL[huggingface]
# install environment dependencies if needed
pip3 install gym[box2d]==0.23.1
```
</details>

### Download Model from Huggingface and Run the Model

<details close>
<summary>(Click for Details)</summary>

```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
import gym

from grl.algorithms.qgpo import QGPOAlgorithm
from grl.datasets import QGPOCustomizedTensorDictDataset

from grl.utils.huggingface import pull_model_from_hub


def qgpo_pipeline():

    policy_state_dict, config = pull_model_from_hub(
        repo_id="zjowowen/LunarLanderContinuous-v2-QGPO",
    )

    qgpo = QGPOAlgorithm(
        config,
        dataset=QGPOCustomizedTensorDictDataset(
            numpy_data_path="./data.npz",
            action_augment_num=config.train.parameter.action_augment_num,
        ),
    )

    qgpo.model.load_state_dict(policy_state_dict)

    # ---------------------------------------
    # Customized train code ↓
    # ---------------------------------------
    # qgpo.train()
    # ---------------------------------------
    # Customized train code ↑
    # ---------------------------------------

    # ---------------------------------------
    # Customized deploy code ↓
    # ---------------------------------------
    agent = qgpo.deploy()
    env = gym.make(config.deploy.env.env_id)
    observation = env.reset()
    images = [env.render(mode="rgb_array")]
    for _ in range(config.deploy.num_deploy_steps):
        observation, reward, done, _ = env.step(agent.act(observation))
        image = env.render(mode="rgb_array")
        images.append(image)
    # save images into mp4 files
    import imageio.v3 as imageio
    import numpy as np

    images = np.array(images)
    imageio.imwrite("replay.mp4", images, fps=30, quality=8)
    # ---------------------------------------
    # Customized deploy code ↑
    # ---------------------------------------


if __name__ == "__main__":

    qgpo_pipeline()

```
</details>

## Model Training

### Train the Model and Push to Huggingface_hub

<details close>
<summary>(Click for Details)</summary>

```shell
#Training Your Own Agent
python3 -u train.py
```
**train.py**
```python
import gym

from grl.algorithms.qgpo import QGPOAlgorithm
from grl.datasets import QGPOCustomizedTensorDictDataset
from grl.utils.log import log
from grl_pipelines.diffusion_model.configurations.lunarlander_continuous_qgpo import (
    config,
)


def qgpo_pipeline(config):

    qgpo = QGPOAlgorithm(
        config,
        dataset=QGPOCustomizedTensorDictDataset(
            numpy_data_path="./data.npz",
            action_augment_num=config.train.parameter.action_augment_num,
        ),
    )

    # ---------------------------------------
    # Customized train code ↓
    # ---------------------------------------
    qgpo.train()
    # ---------------------------------------
    # Customized train code ↑
    # ---------------------------------------

    # ---------------------------------------
    # Customized deploy code ↓
    # ---------------------------------------
    agent = qgpo.deploy()
    env = gym.make(config.deploy.env.env_id)
    observation = env.reset()
    for _ in range(config.deploy.num_deploy_steps):
        env.render()
        observation, reward, done, _ = env.step(agent.act(observation))
    # ---------------------------------------
    # Customized deploy code ↑
    # ---------------------------------------


if __name__ == "__main__":
    log.info("config: \n{}".format(config))
    qgpo_pipeline(config)

```
</details>

**Configuration**
<details close>
<summary>(Click for Details)</summary>


```python
{'train': {'project': 'LunarLanderContinuous-v2-QGPO-VPSDE', 'device': 'cuda', 'wandb': {'project': 'IQL-LunarLanderContinuous-v2-QGPO-VPSDE'}, 'simulator': {'type': 'GymEnvSimulator', 'args': {'env_id': 'LunarLanderContinuous-v2'}}, 'model': {'QGPOPolicy': {'device': 'cuda', 'critic': {'device': 'cuda', 'q_alpha': 1.0, 'DoubleQNetwork': {'backbone': {'type': 'ConcatenateMLP', 'args': {'hidden_sizes': [10, 256, 256], 'output_size': 1, 'activation': 'relu'}}}}, 'diffusion_model': {'device': 'cuda', 'x_size': 2, 'alpha': 1.0, 'solver': {'type': 'DPMSolver', 'args': {'order': 2, 'device': 'cuda', 'steps': 17}}, 'path': {'type': 'linear_vp_sde', 'beta_0': 0.1, 'beta_1': 20.0}, 'reverse_path': {'type': 'linear_vp_sde', 'beta_0': 0.1, 'beta_1': 20.0}, 'model': {'type': 'noise_function', 'args': {'t_encoder': {'type': 'GaussianFourierProjectionTimeEncoder', 'args': {'embed_dim': 32, 'scale': 30.0}}, 'backbone': {'type': 'TemporalSpatialResidualNet', 'args': {'hidden_sizes': [512, 256, 128], 'output_dim': 2, 't_dim': 32, 'condition_dim': 8, 'condition_hidden_dim': 32, 't_condition_hidden_dim': 128}}}}, 'energy_guidance': {'t_encoder': {'type': 'GaussianFourierProjectionTimeEncoder', 'args': {'embed_dim': 32, 'scale': 30.0}}, 'backbone': {'type': 'ConcatenateMLP', 'args': {'hidden_sizes': [42, 256, 256], 'output_size': 1, 'activation': 'silu'}}}}}}, 'parameter': {'behaviour_policy': {'batch_size': 1024, 'learning_rate': 0.0001, 'epochs': 500}, 'action_augment_num': 16, 'fake_data_t_span': None, 'energy_guided_policy': {'batch_size': 256}, 'critic': {'stop_training_epochs': 500, 'learning_rate': 0.0001, 'discount_factor': 0.99, 'update_momentum': 0.005}, 'energy_guidance': {'epochs': 1000, 'learning_rate': 0.0001}, 'evaluation': {'evaluation_interval': 50, 'guidance_scale': [0.0, 1.0, 2.0]}, 'checkpoint_path': './LunarLanderContinuous-v2-QGPO'}}, 'deploy': {'device': 'cuda', 'env': {'env_id': 'LunarLanderContinuous-v2', 'seed': 0}, 'num_deploy_steps': 1000, 't_span': None}}
```

```json
{
    "train": {
        "project": "LunarLanderContinuous-v2-QGPO-VPSDE",
        "device": "cuda",
        "wandb": {
            "project": "IQL-LunarLanderContinuous-v2-QGPO-VPSDE"
        },
        "simulator": {
            "type": "GymEnvSimulator",
            "args": {
                "env_id": "LunarLanderContinuous-v2"
            }
        },
        "model": {
            "QGPOPolicy": {
                "device": "cuda",
                "critic": {
                    "device": "cuda",
                    "q_alpha": 1.0,
                    "DoubleQNetwork": {
                        "backbone": {
                            "type": "ConcatenateMLP",
                            "args": {
                                "hidden_sizes": [
                                    10,
                                    256,
                                    256
                                ],
                                "output_size": 1,
                                "activation": "relu"
                            }
                        }
                    }
                },
                "diffusion_model": {
                    "device": "cuda",
                    "x_size": 2,
                    "alpha": 1.0,
                    "solver": {
                        "type": "DPMSolver",
                        "args": {
                            "order": 2,
                            "device": "cuda",
                            "steps": 17
                        }
                    },
                    "path": {
                        "type": "linear_vp_sde",
                        "beta_0": 0.1,
                        "beta_1": 20.0
                    },
                    "reverse_path": {
                        "type": "linear_vp_sde",
                        "beta_0": 0.1,
                        "beta_1": 20.0
                    },
                    "model": {
                        "type": "noise_function",
                        "args": {
                            "t_encoder": {
                                "type": "GaussianFourierProjectionTimeEncoder",
                                "args": {
                                    "embed_dim": 32,
                                    "scale": 30.0
                                }
                            },
                            "backbone": {
                                "type": "TemporalSpatialResidualNet",
                                "args": {
                                    "hidden_sizes": [
                                        512,
                                        256,
                                        128
                                    ],
                                    "output_dim": 2,
                                    "t_dim": 32,
                                    "condition_dim": 8,
                                    "condition_hidden_dim": 32,
                                    "t_condition_hidden_dim": 128
                                }
                            }
                        }
                    },
                    "energy_guidance": {
                        "t_encoder": {
                            "type": "GaussianFourierProjectionTimeEncoder",
                            "args": {
                                "embed_dim": 32,
                                "scale": 30.0
                            }
                        },
                        "backbone": {
                            "type": "ConcatenateMLP",
                            "args": {
                                "hidden_sizes": [
                                    42,
                                    256,
                                    256
                                ],
                                "output_size": 1,
                                "activation": "silu"
                            }
                        }
                    }
                }
            }
        },
        "parameter": {
            "behaviour_policy": {
                "batch_size": 1024,
                "learning_rate": 0.0001,
                "epochs": 500
            },
            "action_augment_num": 16,
            "fake_data_t_span": null,
            "energy_guided_policy": {
                "batch_size": 256
            },
            "critic": {
                "stop_training_epochs": 500,
                "learning_rate": 0.0001,
                "discount_factor": 0.99,
                "update_momentum": 0.005
            },
            "energy_guidance": {
                "epochs": 1000,
                "learning_rate": 0.0001
            },
            "evaluation": {
                "evaluation_interval": 50,
                "guidance_scale": [
                    0.0,
                    1.0,
                    2.0
                ]
            },
            "checkpoint_path": "./LunarLanderContinuous-v2-QGPO"
        }
    },
    "deploy": {
        "device": "cuda",
        "env": {
            "env_id": "LunarLanderContinuous-v2",
            "seed": 0
        },
        "num_deploy_steps": 1000,
        "t_span": null
    }
}
```

</details>

**Training Procedure** 
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/IQL-LunarLanderContinuous-v2-QGPO-VPSDE)

## Model Information
<!-- Provide the basic links for the model. -->
- **Github Repository:** [repo link](https://github.com/opendilab/GenerativeRL/)
- **Doc**: [Algorithm link](https://opendilab.github.io/GenerativeRL/)
- **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/LunarLanderContinuous-v2-QGPO/blob/main/policy_config.json)
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLanderContinuous-v2-QGPO/blob/main/replay.mp4)
<!-- Provide the size information for the model. -->
- **Parameters total size:** 8799.79 KB
- **Last Update Date:** 2024-12-04

## Environments
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
- **Benchmark:** Box2d
- **Task:** LunarLanderContinuous-v2
- **Gym version:** 0.23.1
- **GenerativeRL version:** v0.0.1
- **PyTorch version:** 2.4.1+cu121
- **Doc**: [Environments link](https://www.gymlibrary.dev/environments/box2d/lunar_lander/)