|
--- |
|
license: other |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-v-mesh-0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-v-mesh-0 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0360 |
|
- Mean Iou: 0.4403 |
|
- Mean Accuracy: 0.8806 |
|
- Overall Accuracy: 0.8806 |
|
- Accuracy Background: nan |
|
- Accuracy Windows: 0.8806 |
|
- Iou Background: 0.0 |
|
- Iou Windows: 0.8806 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Windows | Iou Background | Iou Windows | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:| |
|
| 0.2932 | 0.16 | 20 | 0.3269 | 0.2578 | 0.5156 | 0.5156 | nan | 0.5156 | 0.0 | 0.5156 | |
|
| 0.1417 | 0.31 | 40 | 0.1235 | 0.3790 | 0.7580 | 0.7580 | nan | 0.7580 | 0.0 | 0.7580 | |
|
| 0.0952 | 0.47 | 60 | 0.1245 | 0.4606 | 0.9211 | 0.9211 | nan | 0.9211 | 0.0 | 0.9211 | |
|
| 0.0778 | 0.62 | 80 | 0.0628 | 0.4042 | 0.8084 | 0.8084 | nan | 0.8084 | 0.0 | 0.8084 | |
|
| 0.0448 | 0.78 | 100 | 0.0512 | 0.4161 | 0.8322 | 0.8322 | nan | 0.8322 | 0.0 | 0.8322 | |
|
| 0.0323 | 0.94 | 120 | 0.0435 | 0.4167 | 0.8334 | 0.8334 | nan | 0.8334 | 0.0 | 0.8334 | |
|
| 0.0337 | 1.09 | 140 | 0.0405 | 0.4131 | 0.8262 | 0.8262 | nan | 0.8262 | 0.0 | 0.8262 | |
|
| 0.0586 | 1.25 | 160 | 0.0409 | 0.4509 | 0.9017 | 0.9017 | nan | 0.9017 | 0.0 | 0.9017 | |
|
| 0.0591 | 1.41 | 180 | 0.0404 | 0.4310 | 0.8620 | 0.8620 | nan | 0.8620 | 0.0 | 0.8620 | |
|
| 0.0953 | 1.56 | 200 | 0.0386 | 0.4366 | 0.8732 | 0.8732 | nan | 0.8732 | 0.0 | 0.8732 | |
|
| 0.0607 | 1.72 | 220 | 0.0374 | 0.4414 | 0.8828 | 0.8828 | nan | 0.8828 | 0.0 | 0.8828 | |
|
| 0.0387 | 1.88 | 240 | 0.0360 | 0.4403 | 0.8806 | 0.8806 | nan | 0.8806 | 0.0 | 0.8806 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|