update model card README.md
Browse files
README.md
CHANGED
@@ -16,14 +16,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Mean Iou: 0.
|
21 |
-
- Mean Accuracy: 0.
|
22 |
-
- Overall Accuracy: 0.
|
23 |
- Accuracy Background: nan
|
24 |
-
- Accuracy Windows: 0.
|
25 |
- Iou Background: 0.0
|
26 |
-
- Iou Windows: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,13 +48,24 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Windows | Iou Background | Iou Windows |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
|
57 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0360
|
20 |
+
- Mean Iou: 0.4403
|
21 |
+
- Mean Accuracy: 0.8806
|
22 |
+
- Overall Accuracy: 0.8806
|
23 |
- Accuracy Background: nan
|
24 |
+
- Accuracy Windows: 0.8806
|
25 |
- Iou Background: 0.0
|
26 |
+
- Iou Windows: 0.8806
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 2
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Windows | Iou Background | Iou Windows |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
|
57 |
+
| 0.2932 | 0.16 | 20 | 0.3269 | 0.2578 | 0.5156 | 0.5156 | nan | 0.5156 | 0.0 | 0.5156 |
|
58 |
+
| 0.1417 | 0.31 | 40 | 0.1235 | 0.3790 | 0.7580 | 0.7580 | nan | 0.7580 | 0.0 | 0.7580 |
|
59 |
+
| 0.0952 | 0.47 | 60 | 0.1245 | 0.4606 | 0.9211 | 0.9211 | nan | 0.9211 | 0.0 | 0.9211 |
|
60 |
+
| 0.0778 | 0.62 | 80 | 0.0628 | 0.4042 | 0.8084 | 0.8084 | nan | 0.8084 | 0.0 | 0.8084 |
|
61 |
+
| 0.0448 | 0.78 | 100 | 0.0512 | 0.4161 | 0.8322 | 0.8322 | nan | 0.8322 | 0.0 | 0.8322 |
|
62 |
+
| 0.0323 | 0.94 | 120 | 0.0435 | 0.4167 | 0.8334 | 0.8334 | nan | 0.8334 | 0.0 | 0.8334 |
|
63 |
+
| 0.0337 | 1.09 | 140 | 0.0405 | 0.4131 | 0.8262 | 0.8262 | nan | 0.8262 | 0.0 | 0.8262 |
|
64 |
+
| 0.0586 | 1.25 | 160 | 0.0409 | 0.4509 | 0.9017 | 0.9017 | nan | 0.9017 | 0.0 | 0.9017 |
|
65 |
+
| 0.0591 | 1.41 | 180 | 0.0404 | 0.4310 | 0.8620 | 0.8620 | nan | 0.8620 | 0.0 | 0.8620 |
|
66 |
+
| 0.0953 | 1.56 | 200 | 0.0386 | 0.4366 | 0.8732 | 0.8732 | nan | 0.8732 | 0.0 | 0.8732 |
|
67 |
+
| 0.0607 | 1.72 | 220 | 0.0374 | 0.4414 | 0.8828 | 0.8828 | nan | 0.8828 | 0.0 | 0.8828 |
|
68 |
+
| 0.0387 | 1.88 | 240 | 0.0360 | 0.4403 | 0.8806 | 0.8806 | nan | 0.8806 | 0.0 | 0.8806 |
|
69 |
|
70 |
|
71 |
### Framework versions
|