File size: 19,135 Bytes
1fae98d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
import webdataset as wds
import kornia
from PIL import Image
import io
import os
import torchvision
from PIL import Image
import glob
import random
import numpy as np
import pytorch_lightning as pl
from tqdm import tqdm
from omegaconf import OmegaConf
from einops import rearrange
import torch
from webdataset.handlers import warn_and_continue
from ldm.util import instantiate_from_config
from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
from ldm.data.base import PRNGMixin
class DataWithWings(torch.utils.data.IterableDataset):
def __init__(self, min_size, transform=None, target_transform=None):
self.min_size = min_size
self.transform = transform if transform is not None else nn.Identity()
self.target_transform = target_transform if target_transform is not None else nn.Identity()
self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
self.pwatermark_threshold = 0.8
self.punsafe_threshold = 0.5
self.aesthetic_threshold = 5.
self.total_samples = 0
self.samples = 0
location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
self.inner_dataset = wds.DataPipeline(
wds.ResampledShards(location),
wds.tarfile_to_samples(handler=wds.warn_and_continue),
wds.shuffle(1000, handler=wds.warn_and_continue),
wds.decode('pilrgb', handler=wds.warn_and_continue),
wds.map(self._add_tags, handler=wds.ignore_and_continue),
wds.select(self._filter_predicate),
wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
)
@staticmethod
def _compute_hash(url, text):
if url is None:
url = ''
if text is None:
text = ''
total = (url + text).encode('utf-8')
return mmh3.hash64(total)[0]
def _add_tags(self, x):
hsh = self._compute_hash(x['json']['url'], x['txt'])
pwatermark, punsafe = self.kv[hsh]
aesthetic = self.kv_aesthetic[hsh][0]
return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
def _punsafe_to_class(self, punsafe):
return torch.tensor(punsafe >= self.punsafe_threshold).long()
def _filter_predicate(self, x):
try:
return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
except:
return False
def __iter__(self):
return iter(self.inner_dataset)
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
If `tensors` is True, `ndarray` objects are combined into
tensor batches.
:param dict samples: list of samples
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
:returns: single sample consisting of a batch
:rtype: dict
"""
keys = set.intersection(*[set(sample.keys()) for sample in samples])
batched = {key: [] for key in keys}
for s in samples:
[batched[key].append(s[key]) for key in batched]
result = {}
for key in batched:
if isinstance(batched[key][0], (int, float)):
if combine_scalars:
result[key] = np.array(list(batched[key]))
elif isinstance(batched[key][0], torch.Tensor):
if combine_tensors:
result[key] = torch.stack(list(batched[key]))
elif isinstance(batched[key][0], np.ndarray):
if combine_tensors:
result[key] = np.array(list(batched[key]))
else:
result[key] = list(batched[key])
return result
class WebDataModuleFromConfig(pl.LightningDataModule):
def __init__(self, tar_base, batch_size, train=None, validation=None,
test=None, num_workers=4, multinode=True, min_size=None,
max_pwatermark=1.0,
**kwargs):
super().__init__(self)
print(f'Setting tar base to {tar_base}')
self.tar_base = tar_base
self.batch_size = batch_size
self.num_workers = num_workers
self.train = train
self.validation = validation
self.test = test
self.multinode = multinode
self.min_size = min_size # filter out very small images
self.max_pwatermark = max_pwatermark # filter out watermarked images
def make_loader(self, dataset_config, train=True):
if 'image_transforms' in dataset_config:
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
else:
image_transforms = []
image_transforms.extend([torchvision.transforms.ToTensor(),
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = torchvision.transforms.Compose(image_transforms)
if 'transforms' in dataset_config:
transforms_config = OmegaConf.to_container(dataset_config.transforms)
else:
transforms_config = dict()
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
if transforms_config[dkey] != 'identity' else identity
for dkey in transforms_config}
img_key = dataset_config.get('image_key', 'jpeg')
transform_dict.update({img_key: image_transforms})
if 'postprocess' in dataset_config:
postprocess = instantiate_from_config(dataset_config['postprocess'])
else:
postprocess = None
shuffle = dataset_config.get('shuffle', 0)
shardshuffle = shuffle > 0
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
if self.tar_base == "__improvedaesthetic__":
print("## Warning, loading the same improved aesthetic dataset "
"for all splits and ignoring shards parameter.")
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
else:
tars = os.path.join(self.tar_base, dataset_config.shards)
dset = wds.WebDataset(
tars,
nodesplitter=nodesplitter,
shardshuffle=shardshuffle,
handler=wds.warn_and_continue).repeat().shuffle(shuffle)
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
dset = (dset
.select(self.filter_keys)
.decode('pil', handler=wds.warn_and_continue)
.select(self.filter_size)
.map_dict(**transform_dict, handler=wds.warn_and_continue)
)
if postprocess is not None:
dset = dset.map(postprocess)
dset = (dset
.batched(self.batch_size, partial=False,
collation_fn=dict_collation_fn)
)
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
num_workers=self.num_workers)
return loader
def filter_size(self, x):
try:
valid = True
if self.min_size is not None and self.min_size > 1:
try:
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
except Exception:
valid = False
if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
try:
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
except Exception:
valid = False
return valid
except Exception:
return False
def filter_keys(self, x):
try:
return ("jpg" in x) and ("txt" in x)
except Exception:
return False
def train_dataloader(self):
return self.make_loader(self.train)
def val_dataloader(self):
return self.make_loader(self.validation, train=False)
def test_dataloader(self):
return self.make_loader(self.test, train=False)
from ldm.modules.image_degradation import degradation_fn_bsr_light
import cv2
class AddLR(object):
def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
self.factor = factor
self.output_size = output_size
self.image_key = image_key
self.initial_size = initial_size
def pt2np(self, x):
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
return x
def np2pt(self, x):
x = torch.from_numpy(x)/127.5-1.0
return x
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = self.pt2np(sample[self.image_key])
if self.initial_size is not None:
x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
x = degradation_fn_bsr_light(x, sf=self.factor)['image']
x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
x = self.np2pt(x)
sample['lr'] = x
return sample
class AddBW(object):
def __init__(self, image_key="jpg"):
self.image_key = image_key
def pt2np(self, x):
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
return x
def np2pt(self, x):
x = torch.from_numpy(x)/127.5-1.0
return x
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = sample[self.image_key]
w = torch.rand(3, device=x.device)
w /= w.sum()
out = torch.einsum('hwc,c->hw', x, w)
# Keep as 3ch so we can pass to encoder, also we might want to add hints
sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
return sample
class AddMask(PRNGMixin):
def __init__(self, mode="512train", p_drop=0.):
super().__init__()
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
self.make_mask = MASK_MODES[mode]
self.p_drop = p_drop
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = sample['jpg']
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
mask = np.ones_like(mask)
mask[mask < 0.5] = 0
mask[mask > 0.5] = 1
mask = torch.from_numpy(mask[..., None])
sample['mask'] = mask
sample['masked_image'] = x * (mask < 0.5)
return sample
class AddEdge(PRNGMixin):
def __init__(self, mode="512train", mask_edges=True):
super().__init__()
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
self.make_mask = MASK_MODES[mode]
self.n_down_choices = [0]
self.sigma_choices = [1, 2]
self.mask_edges = mask_edges
@torch.no_grad()
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = sample['jpg']
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
mask[mask < 0.5] = 0
mask[mask > 0.5] = 1
mask = torch.from_numpy(mask[..., None])
sample['mask'] = mask
n_down_idx = self.prng.choice(len(self.n_down_choices))
sigma_idx = self.prng.choice(len(self.sigma_choices))
n_choices = len(self.n_down_choices)*len(self.sigma_choices)
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
(len(self.n_down_choices), len(self.sigma_choices)))
normalized_idx = raveled_idx/max(1, n_choices-1)
n_down = self.n_down_choices[n_down_idx]
sigma = self.sigma_choices[sigma_idx]
kernel_size = 4*sigma+1
kernel_size = (kernel_size, kernel_size)
sigma = (sigma, sigma)
canny = kornia.filters.Canny(
low_threshold=0.1,
high_threshold=0.2,
kernel_size=kernel_size,
sigma=sigma,
hysteresis=True,
)
y = (x+1.0)/2.0 # in 01
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
# down
for i_down in range(n_down):
size = min(y.shape[-2], y.shape[-1])//2
y = kornia.geometry.transform.resize(y, size, antialias=True)
# edge
_, y = canny(y)
if n_down > 0:
size = x.shape[0], x.shape[1]
y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
y = y*2.0-1.0
if self.mask_edges:
sample['masked_image'] = y * (mask < 0.5)
else:
sample['masked_image'] = y
sample['mask'] = torch.zeros_like(sample['mask'])
# concat normalized idx
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
return sample
def example00():
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
dataset = wds.WebDataset(url)
example = next(iter(dataset))
for k in example:
print(k, type(example[k]))
print(example["__key__"])
for k in ["json", "txt"]:
print(example[k].decode())
image = Image.open(io.BytesIO(example["jpg"]))
outdir = "tmp"
os.makedirs(outdir, exist_ok=True)
image.save(os.path.join(outdir, example["__key__"] + ".png"))
def load_example(example):
return {
"key": example["__key__"],
"image": Image.open(io.BytesIO(example["jpg"])),
"text": example["txt"].decode(),
}
for i, example in tqdm(enumerate(dataset)):
ex = load_example(example)
print(ex["image"].size, ex["text"])
if i >= 100:
break
def example01():
# the first laion shards contain ~10k examples each
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
batch_size = 3
shuffle_buffer = 10000
dset = wds.WebDataset(
url,
nodesplitter=wds.shardlists.split_by_node,
shardshuffle=True,
)
dset = (dset
.shuffle(shuffle_buffer, initial=shuffle_buffer)
.decode('pil', handler=warn_and_continue)
.batched(batch_size, partial=False,
collation_fn=dict_collation_fn)
)
num_workers = 2
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
batch_sizes = list()
keys_per_epoch = list()
for epoch in range(5):
keys = list()
for batch in tqdm(loader):
batch_sizes.append(len(batch["__key__"]))
keys.append(batch["__key__"])
for bs in batch_sizes:
assert bs==batch_size
print(f"{len(batch_sizes)} batches of size {batch_size}.")
batch_sizes = list()
keys_per_epoch.append(keys)
for i_batch in [0, 1, -1]:
print(f"Batch {i_batch} of epoch {epoch}:")
print(keys[i_batch])
print("next epoch.")
def example02():
from omegaconf import OmegaConf
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import IterableDataset
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
#config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
datamod = WebDataModuleFromConfig(**config["data"]["params"])
dataloader = datamod.train_dataloader()
for batch in dataloader:
print(batch.keys())
print(batch["jpg"].shape)
break
def example03():
# improved aesthetics
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
dataset = wds.WebDataset(tars)
def filter_keys(x):
try:
return ("jpg" in x) and ("txt" in x)
except Exception:
return False
def filter_size(x):
try:
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
except Exception:
return False
def filter_watermark(x):
try:
return x['json']['pwatermark'] < 0.5
except Exception:
return False
dataset = (dataset
.select(filter_keys)
.decode('pil', handler=wds.warn_and_continue))
n_save = 20
n_total = 0
n_large = 0
n_large_nowm = 0
for i, example in enumerate(dataset):
n_total += 1
if filter_size(example):
n_large += 1
if filter_watermark(example):
n_large_nowm += 1
if n_large_nowm < n_save+1:
image = example["jpg"]
image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
if i%500 == 0:
print(i)
print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
if n_large > 0:
print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
def example04():
# improved aesthetics
for i_shard in range(60208)[::-1]:
print(i_shard)
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
dataset = wds.WebDataset(tars)
def filter_keys(x):
try:
return ("jpg" in x) and ("txt" in x)
except Exception:
return False
def filter_size(x):
try:
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
except Exception:
return False
dataset = (dataset
.select(filter_keys)
.decode('pil', handler=wds.warn_and_continue))
try:
example = next(iter(dataset))
except Exception:
print(f"Error @ {i_shard}")
if __name__ == "__main__":
#example01()
#example02()
example03()
#example04()
|