Text-to-3D
image-to-3d
File size: 6,882 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch.nn as nn
import torch.nn.functional as F


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution without padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False)


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)


class BasicBlock(nn.Module):
    def __init__(self, in_planes, planes, stride=1):
        super().__init__()
        self.conv1 = conv3x3(in_planes, planes, stride)
        self.conv2 = conv3x3(planes, planes)
        self.bn1 = nn.BatchNorm2d(planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)

        if stride == 1:
            self.downsample = None
        else:
            self.downsample = nn.Sequential(
                conv1x1(in_planes, planes, stride=stride),
                nn.BatchNorm2d(planes)
            )

    def forward(self, x):
        y = x
        y = self.relu(self.bn1(self.conv1(y)))
        y = self.bn2(self.conv2(y))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x+y)


class ResNetFPN_8_2(nn.Module):
    """
    ResNet+FPN, output resolution are 1/8 and 1/2.
    Each block has 2 layers.
    """

    def __init__(self, config):
        super().__init__()
        # Config
        block = BasicBlock
        initial_dim = config['initial_dim']
        block_dims = config['block_dims']

        # Class Variable
        self.in_planes = initial_dim

        # Networks
        self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(initial_dim)
        self.relu = nn.ReLU(inplace=True)

        self.layer1 = self._make_layer(block, block_dims[0], stride=1)  # 1/2
        self.layer2 = self._make_layer(block, block_dims[1], stride=2)  # 1/4
        self.layer3 = self._make_layer(block, block_dims[2], stride=2)  # 1/8

        # 3. FPN upsample
        self.layer3_outconv = conv1x1(block_dims[2], block_dims[2])
        self.layer2_outconv = conv1x1(block_dims[1], block_dims[2])
        self.layer2_outconv2 = nn.Sequential(
            conv3x3(block_dims[2], block_dims[2]),
            nn.BatchNorm2d(block_dims[2]),
            nn.LeakyReLU(),
            conv3x3(block_dims[2], block_dims[1]),
        )
        self.layer1_outconv = conv1x1(block_dims[0], block_dims[1])
        self.layer1_outconv2 = nn.Sequential(
            conv3x3(block_dims[1], block_dims[1]),
            nn.BatchNorm2d(block_dims[1]),
            nn.LeakyReLU(),
            conv3x3(block_dims[1], block_dims[0]),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, dim, stride=1):
        layer1 = block(self.in_planes, dim, stride=stride)
        layer2 = block(dim, dim, stride=1)
        layers = (layer1, layer2)

        self.in_planes = dim
        return nn.Sequential(*layers)

    def forward(self, x):
        # ResNet Backbone
        x0 = self.relu(self.bn1(self.conv1(x)))
        x1 = self.layer1(x0)  # 1/2
        x2 = self.layer2(x1)  # 1/4
        x3 = self.layer3(x2)  # 1/8

        # FPN
        x3_out = self.layer3_outconv(x3)

        x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True)
        x2_out = self.layer2_outconv(x2)
        x2_out = self.layer2_outconv2(x2_out+x3_out_2x)

        x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True)
        x1_out = self.layer1_outconv(x1)
        x1_out = self.layer1_outconv2(x1_out+x2_out_2x)

        return [x3_out, x1_out]


class ResNetFPN_16_4(nn.Module):
    """
    ResNet+FPN, output resolution are 1/16 and 1/4.
    Each block has 2 layers.
    """

    def __init__(self, config):
        super().__init__()
        # Config
        block = BasicBlock
        initial_dim = config['initial_dim']
        block_dims = config['block_dims']

        # Class Variable
        self.in_planes = initial_dim

        # Networks
        self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(initial_dim)
        self.relu = nn.ReLU(inplace=True)

        self.layer1 = self._make_layer(block, block_dims[0], stride=1)  # 1/2
        self.layer2 = self._make_layer(block, block_dims[1], stride=2)  # 1/4
        self.layer3 = self._make_layer(block, block_dims[2], stride=2)  # 1/8
        self.layer4 = self._make_layer(block, block_dims[3], stride=2)  # 1/16

        # 3. FPN upsample
        self.layer4_outconv = conv1x1(block_dims[3], block_dims[3])
        self.layer3_outconv = conv1x1(block_dims[2], block_dims[3])
        self.layer3_outconv2 = nn.Sequential(
            conv3x3(block_dims[3], block_dims[3]),
            nn.BatchNorm2d(block_dims[3]),
            nn.LeakyReLU(),
            conv3x3(block_dims[3], block_dims[2]),
        )

        self.layer2_outconv = conv1x1(block_dims[1], block_dims[2])
        self.layer2_outconv2 = nn.Sequential(
            conv3x3(block_dims[2], block_dims[2]),
            nn.BatchNorm2d(block_dims[2]),
            nn.LeakyReLU(),
            conv3x3(block_dims[2], block_dims[1]),
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, dim, stride=1):
        layer1 = block(self.in_planes, dim, stride=stride)
        layer2 = block(dim, dim, stride=1)
        layers = (layer1, layer2)

        self.in_planes = dim
        return nn.Sequential(*layers)

    def forward(self, x):
        # ResNet Backbone
        x0 = self.relu(self.bn1(self.conv1(x)))
        x1 = self.layer1(x0)  # 1/2
        x2 = self.layer2(x1)  # 1/4
        x3 = self.layer3(x2)  # 1/8
        x4 = self.layer4(x3)  # 1/16

        # FPN
        x4_out = self.layer4_outconv(x4)

        x4_out_2x = F.interpolate(x4_out, scale_factor=2., mode='bilinear', align_corners=True)
        x3_out = self.layer3_outconv(x3)
        x3_out = self.layer3_outconv2(x3_out+x4_out_2x)

        x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True)
        x2_out = self.layer2_outconv(x2)
        x2_out = self.layer2_outconv2(x2_out+x3_out_2x)

        return [x4_out, x2_out]