Text-to-3D
image-to-3d
File size: 9,937 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os.path as osp
import os
import matplotlib.pyplot as plt
import torch
import cv2
import math

import numpy as np
import tqdm
from cv2 import findContours
from dl_ext.primitive import safe_zip
from dl_ext.timer import EvalTime


def plot_confidence(confidence):
    n = len(confidence)
    plt.plot(np.arange(n), confidence)
    plt.show()


def image_grid(
        images,
        rows=None,
        cols=None,
        fill: bool = True,
        show_axes: bool = False,
        rgb=None,
        show=True,
        label=None,
        **kwargs
):
    """
    A util function for plotting a grid of images.
    Args:
        images: (N, H, W, 4) array of RGBA images
        rows: number of rows in the grid
        cols: number of columns in the grid
        fill: boolean indicating if the space between images should be filled
        show_axes: boolean indicating if the axes of the plots should be visible
        rgb: boolean, If True, only RGB channels are plotted.
            If False, only the alpha channel is plotted.
    Returns:
        None
    """
    evaltime = EvalTime(disable=True)
    evaltime('')
    if isinstance(images, torch.Tensor):
        images = images.detach().cpu()
    if len(images[0].shape) == 2:
        rgb = False
    if images[0].shape[-1] == 2:
        # flow
        images = [flow_to_image(im) for im in images]
    if (rows is None) != (cols is None):
        raise ValueError("Specify either both rows and cols or neither.")

    if rows is None:
        rows = int(len(images) ** 0.5)
        cols = math.ceil(len(images) / rows)

    gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {}
    if len(images) < 50:
        figsize = (10, 10)
    else:
        figsize = (15, 15)
    evaltime('0.5')
    plt.figure(figsize=figsize)
    # fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=figsize)
    if label:
        # fig.suptitle(label, fontsize=30)
        plt.suptitle(label, fontsize=30)
    # bleed = 0
    # fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed))
    evaltime('subplots')

    # for i, (ax, im) in enumerate(tqdm.tqdm(zip(axarr.ravel(), images), leave=True, total=len(images))):
    for i in range(len(images)):
        # evaltime(f'{i} begin')
        plt.subplot(rows, cols, i + 1)
        if rgb:
            # only render RGB channels
            plt.imshow(images[i][..., :3], **kwargs)
            # ax.imshow(im[..., :3], **kwargs)
        else:
            # only render Alpha channel
            plt.imshow(images[i], **kwargs)
            # ax.imshow(im, **kwargs)
        if not show_axes:
            plt.axis('off')
            # ax.set_axis_off()
        # ax.set_title(f'{i}')
        plt.title(f'{i}')
        # evaltime(f'{i} end')
    evaltime('2')
    if show:
        plt.show()
    # return fig


def depth_grid(
        depths,
        rows=None,
        cols=None,
        fill: bool = True,
        show_axes: bool = False,
):
    """
    A util function for plotting a grid of images.
    Args:
        images: (N, H, W, 4) array of RGBA images
        rows: number of rows in the grid
        cols: number of columns in the grid
        fill: boolean indicating if the space between images should be filled
        show_axes: boolean indicating if the axes of the plots should be visible
        rgb: boolean, If True, only RGB channels are plotted.
            If False, only the alpha channel is plotted.
    Returns:
        None
    """
    if (rows is None) != (cols is None):
        raise ValueError("Specify either both rows and cols or neither.")

    if rows is None:
        rows = len(depths)
        cols = 1

    gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {}
    fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=(15, 9))
    bleed = 0
    fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed))

    for ax, im in zip(axarr.ravel(), depths):
        ax.imshow(im)
        if not show_axes:
            ax.set_axis_off()
    plt.show()


def hover_masks_on_imgs(images, masks):
    masks = np.array(masks)
    new_imgs = []
    tids = list(range(1, masks.max() + 1))
    colors = colormap(rgb=True, lighten=True)
    for im, mask in tqdm.tqdm(safe_zip(images, masks), total=len(images)):
        for tid in tids:
            im = vis_mask(
                im,
                (mask == tid).astype(np.uint8),
                color=colors[tid],
                alpha=0.5,
                border_alpha=0.5,
                border_color=[255, 255, 255],
                border_thick=3)
        new_imgs.append(im)
    return new_imgs


def vis_mask(img,
             mask,
             color=[255, 255, 255],
             alpha=0.4,
             show_border=True,
             border_alpha=0.5,
             border_thick=1,
             border_color=None):
    """Visualizes a single binary mask."""
    if isinstance(mask, torch.Tensor):
        from anypose.utils.pn_utils import to_array
        mask = to_array(mask > 0).astype(np.uint8)
    img = img.astype(np.float32)
    idx = np.nonzero(mask)

    img[idx[0], idx[1], :] *= 1.0 - alpha
    img[idx[0], idx[1], :] += [alpha * x for x in color]

    if show_border:
        contours, _ = findContours(
            mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        # contours = [c for c in contours if c.shape[0] > 10]
        if border_color is None:
            border_color = color
        if not isinstance(border_color, list):
            border_color = border_color.tolist()
        if border_alpha < 1:
            with_border = img.copy()
            cv2.drawContours(with_border, contours, -1, border_color,
                             border_thick, cv2.LINE_AA)
            img = (1 - border_alpha) * img + border_alpha * with_border
        else:
            cv2.drawContours(img, contours, -1, border_color, border_thick,
                             cv2.LINE_AA)

    return img.astype(np.uint8)


def colormap(rgb=False, lighten=True):
    """Copied from Detectron codebase."""
    color_list = np.array(
        [
            0.000, 0.447, 0.741,
            0.850, 0.325, 0.098,
            0.929, 0.694, 0.125,
            0.494, 0.184, 0.556,
            0.466, 0.674, 0.188,
            0.301, 0.745, 0.933,
            0.635, 0.078, 0.184,
            0.300, 0.300, 0.300,
            0.600, 0.600, 0.600,
            1.000, 0.000, 0.000,
            1.000, 0.500, 0.000,
            0.749, 0.749, 0.000,
            0.000, 1.000, 0.000,
            0.000, 0.000, 1.000,
            0.667, 0.000, 1.000,
            0.333, 0.333, 0.000,
            0.333, 0.667, 0.000,
            0.333, 1.000, 0.000,
            0.667, 0.333, 0.000,
            0.667, 0.667, 0.000,
            0.667, 1.000, 0.000,
            1.000, 0.333, 0.000,
            1.000, 0.667, 0.000,
            1.000, 1.000, 0.000,
            0.000, 0.333, 0.500,
            0.000, 0.667, 0.500,
            0.000, 1.000, 0.500,
            0.333, 0.000, 0.500,
            0.333, 0.333, 0.500,
            0.333, 0.667, 0.500,
            0.333, 1.000, 0.500,
            0.667, 0.000, 0.500,
            0.667, 0.333, 0.500,
            0.667, 0.667, 0.500,
            0.667, 1.000, 0.500,
            1.000, 0.000, 0.500,
            1.000, 0.333, 0.500,
            1.000, 0.667, 0.500,
            1.000, 1.000, 0.500,
            0.000, 0.333, 1.000,
            0.000, 0.667, 1.000,
            0.000, 1.000, 1.000,
            0.333, 0.000, 1.000,
            0.333, 0.333, 1.000,
            0.333, 0.667, 1.000,
            0.333, 1.000, 1.000,
            0.667, 0.000, 1.000,
            0.667, 0.333, 1.000,
            0.667, 0.667, 1.000,
            0.667, 1.000, 1.000,
            1.000, 0.000, 1.000,
            1.000, 0.333, 1.000,
            1.000, 0.667, 1.000,
            0.167, 0.000, 0.000,
            0.333, 0.000, 0.000,
            0.500, 0.000, 0.000,
            0.667, 0.000, 0.000,
            0.833, 0.000, 0.000,
            1.000, 0.000, 0.000,
            0.000, 0.167, 0.000,
            0.000, 0.333, 0.000,
            0.000, 0.500, 0.000,
            0.000, 0.667, 0.000,
            0.000, 0.833, 0.000,
            0.000, 1.000, 0.000,
            0.000, 0.000, 0.167,
            0.000, 0.000, 0.333,
            0.000, 0.000, 0.500,
            0.000, 0.000, 0.667,
            0.000, 0.000, 0.833,
            0.000, 0.000, 1.000,
            0.000, 0.000, 0.000,
            0.143, 0.143, 0.143,
            0.286, 0.286, 0.286,
            0.429, 0.429, 0.429,
            0.571, 0.571, 0.571,
            0.714, 0.714, 0.714,
            0.857, 0.857, 0.857,
            1.000, 1.000, 1.000
        ]
    ).astype(np.float32)
    color_list = color_list.reshape((-1, 3))
    if not rgb:
        color_list = color_list[:, ::-1]

    if lighten:
        # Make all the colors a little lighter / whiter. This is copied
        # from the detectron visualization code (search for 'w_ratio').
        w_ratio = 0.4
        color_list = (color_list * (1 - w_ratio) + w_ratio)
    return color_list * 255


def vis_layer_mask(masks, save_path=None):
    masks = torch.as_tensor(masks)
    tids = masks.unique().tolist()
    tids.remove(0)
    for tid in tqdm.tqdm(tids):
        show = save_path is None
        image_grid(masks == tid, label=f'{tid}', show=show)
        if save_path:
            os.makedirs(osp.dirname(save_path), exist_ok=True)
            plt.savefig(save_path % tid)
            plt.close('all')


def show(x, **kwargs):
    if isinstance(x, torch.Tensor):
        x = x.detach().cpu()
    plt.imshow(x, **kwargs)
    plt.show()


def vis_title(rgb, text, shift_y=30):
    tmp = rgb.copy()
    shift_x = rgb.shape[1] // 2
    cv2.putText(tmp, text,
                (shift_x, shift_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=2, lineType=cv2.LINE_AA)
    return tmp