File size: 15,555 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"""
pytorch grid_sample doesn't support second-order derivative
implement custom version
"""

import torch
import torch.nn.functional as F
import numpy as np


def grid_sample_2d(image, optical):
    N, C, IH, IW = image.shape
    _, H, W, _ = optical.shape

    ix = optical[..., 0]
    iy = optical[..., 1]

    ix = ((ix + 1) / 2) * (IW - 1);
    iy = ((iy + 1) / 2) * (IH - 1);
    with torch.no_grad():
        ix_nw = torch.floor(ix);
        iy_nw = torch.floor(iy);
        ix_ne = ix_nw + 1;
        iy_ne = iy_nw;
        ix_sw = ix_nw;
        iy_sw = iy_nw + 1;
        ix_se = ix_nw + 1;
        iy_se = iy_nw + 1;

    nw = (ix_se - ix) * (iy_se - iy)
    ne = (ix - ix_sw) * (iy_sw - iy)
    sw = (ix_ne - ix) * (iy - iy_ne)
    se = (ix - ix_nw) * (iy - iy_nw)

    with torch.no_grad():
        torch.clamp(ix_nw, 0, IW - 1, out=ix_nw)
        torch.clamp(iy_nw, 0, IH - 1, out=iy_nw)

        torch.clamp(ix_ne, 0, IW - 1, out=ix_ne)
        torch.clamp(iy_ne, 0, IH - 1, out=iy_ne)

        torch.clamp(ix_sw, 0, IW - 1, out=ix_sw)
        torch.clamp(iy_sw, 0, IH - 1, out=iy_sw)

        torch.clamp(ix_se, 0, IW - 1, out=ix_se)
        torch.clamp(iy_se, 0, IH - 1, out=iy_se)

    image = image.view(N, C, IH * IW)

    nw_val = torch.gather(image, 2, (iy_nw * IW + ix_nw).long().view(N, 1, H * W).repeat(1, C, 1))
    ne_val = torch.gather(image, 2, (iy_ne * IW + ix_ne).long().view(N, 1, H * W).repeat(1, C, 1))
    sw_val = torch.gather(image, 2, (iy_sw * IW + ix_sw).long().view(N, 1, H * W).repeat(1, C, 1))
    se_val = torch.gather(image, 2, (iy_se * IW + ix_se).long().view(N, 1, H * W).repeat(1, C, 1))

    out_val = (nw_val.view(N, C, H, W) * nw.view(N, 1, H, W) +
               ne_val.view(N, C, H, W) * ne.view(N, 1, H, W) +
               sw_val.view(N, C, H, W) * sw.view(N, 1, H, W) +
               se_val.view(N, C, H, W) * se.view(N, 1, H, W))

    return out_val


# - checked for correctness
def grid_sample_3d(volume, optical):
    """
    bilinear sampling cannot guarantee continuous first-order gradient
    mimic pytorch grid_sample function
    The 8 corner points of a volume noted as: 4 points (front view); 4 points (back view)
    fnw (front north west) point
    bse (back south east) point
    :param volume: [B, C, X, Y, Z]
    :param optical: [B, x, y, z, 3]
    :return:
    """
    N, C, ID, IH, IW = volume.shape
    _, D, H, W, _ = optical.shape

    ix = optical[..., 0]
    iy = optical[..., 1]
    iz = optical[..., 2]

    ix = ((ix + 1) / 2) * (IW - 1)
    iy = ((iy + 1) / 2) * (IH - 1)
    iz = ((iz + 1) / 2) * (ID - 1)

    mask_x = (ix > 0) & (ix < IW)
    mask_y = (iy > 0) & (iy < IH)
    mask_z = (iz > 0) & (iz < ID)

    mask = mask_x & mask_y & mask_z  # [B, x, y, z]
    mask = mask[:, None, :, :, :].repeat(1, C, 1, 1, 1)  # [B, C, x, y, z]

    with torch.no_grad():
        # back north west
        ix_bnw = torch.floor(ix)
        iy_bnw = torch.floor(iy)
        iz_bnw = torch.floor(iz)

        ix_bne = ix_bnw + 1
        iy_bne = iy_bnw
        iz_bne = iz_bnw

        ix_bsw = ix_bnw
        iy_bsw = iy_bnw + 1
        iz_bsw = iz_bnw

        ix_bse = ix_bnw + 1
        iy_bse = iy_bnw + 1
        iz_bse = iz_bnw

        # front view
        ix_fnw = ix_bnw
        iy_fnw = iy_bnw
        iz_fnw = iz_bnw + 1

        ix_fne = ix_bnw + 1
        iy_fne = iy_bnw
        iz_fne = iz_bnw + 1

        ix_fsw = ix_bnw
        iy_fsw = iy_bnw + 1
        iz_fsw = iz_bnw + 1

        ix_fse = ix_bnw + 1
        iy_fse = iy_bnw + 1
        iz_fse = iz_bnw + 1

    # back view
    bnw = (ix_fse - ix) * (iy_fse - iy) * (iz_fse - iz)  # smaller volume, larger weight
    bne = (ix - ix_fsw) * (iy_fsw - iy) * (iz_fsw - iz)
    bsw = (ix_fne - ix) * (iy - iy_fne) * (iz_fne - iz)
    bse = (ix - ix_fnw) * (iy - iy_fnw) * (iz_fnw - iz)

    # front view
    fnw = (ix_bse - ix) * (iy_bse - iy) * (iz - iz_bse)  # smaller volume, larger weight
    fne = (ix - ix_bsw) * (iy_bsw - iy) * (iz - iz_bsw)
    fsw = (ix_bne - ix) * (iy - iy_bne) * (iz - iz_bne)
    fse = (ix - ix_bnw) * (iy - iy_bnw) * (iz - iz_bnw)

    with torch.no_grad():
        # back view
        torch.clamp(ix_bnw, 0, IW - 1, out=ix_bnw)
        torch.clamp(iy_bnw, 0, IH - 1, out=iy_bnw)
        torch.clamp(iz_bnw, 0, ID - 1, out=iz_bnw)

        torch.clamp(ix_bne, 0, IW - 1, out=ix_bne)
        torch.clamp(iy_bne, 0, IH - 1, out=iy_bne)
        torch.clamp(iz_bne, 0, ID - 1, out=iz_bne)

        torch.clamp(ix_bsw, 0, IW - 1, out=ix_bsw)
        torch.clamp(iy_bsw, 0, IH - 1, out=iy_bsw)
        torch.clamp(iz_bsw, 0, ID - 1, out=iz_bsw)

        torch.clamp(ix_bse, 0, IW - 1, out=ix_bse)
        torch.clamp(iy_bse, 0, IH - 1, out=iy_bse)
        torch.clamp(iz_bse, 0, ID - 1, out=iz_bse)

        # front view
        torch.clamp(ix_fnw, 0, IW - 1, out=ix_fnw)
        torch.clamp(iy_fnw, 0, IH - 1, out=iy_fnw)
        torch.clamp(iz_fnw, 0, ID - 1, out=iz_fnw)

        torch.clamp(ix_fne, 0, IW - 1, out=ix_fne)
        torch.clamp(iy_fne, 0, IH - 1, out=iy_fne)
        torch.clamp(iz_fne, 0, ID - 1, out=iz_fne)

        torch.clamp(ix_fsw, 0, IW - 1, out=ix_fsw)
        torch.clamp(iy_fsw, 0, IH - 1, out=iy_fsw)
        torch.clamp(iz_fsw, 0, ID - 1, out=iz_fsw)

        torch.clamp(ix_fse, 0, IW - 1, out=ix_fse)
        torch.clamp(iy_fse, 0, IH - 1, out=iy_fse)
        torch.clamp(iz_fse, 0, ID - 1, out=iz_fse)

    # xxx = volume[:, :, iz_bnw.long(), iy_bnw.long(), ix_bnw.long()]
    volume = volume.view(N, C, ID * IH * IW)
    # yyy = volume[:, :, (iz_bnw * ID + iy_bnw * IW + ix_bnw).long()]

    # back view
    bnw_val = torch.gather(volume, 2,
                           (iz_bnw * ID ** 2 + iy_bnw * IW + ix_bnw).long().view(N, 1, D * H * W).repeat(1, C, 1))
    bne_val = torch.gather(volume, 2,
                           (iz_bne * ID ** 2 + iy_bne * IW + ix_bne).long().view(N, 1, D * H * W).repeat(1, C, 1))
    bsw_val = torch.gather(volume, 2,
                           (iz_bsw * ID ** 2 + iy_bsw * IW + ix_bsw).long().view(N, 1, D * H * W).repeat(1, C, 1))
    bse_val = torch.gather(volume, 2,
                           (iz_bse * ID ** 2 + iy_bse * IW + ix_bse).long().view(N, 1, D * H * W).repeat(1, C, 1))

    # front view
    fnw_val = torch.gather(volume, 2,
                           (iz_fnw * ID ** 2 + iy_fnw * IW + ix_fnw).long().view(N, 1, D * H * W).repeat(1, C, 1))
    fne_val = torch.gather(volume, 2,
                           (iz_fne * ID ** 2 + iy_fne * IW + ix_fne).long().view(N, 1, D * H * W).repeat(1, C, 1))
    fsw_val = torch.gather(volume, 2,
                           (iz_fsw * ID ** 2 + iy_fsw * IW + ix_fsw).long().view(N, 1, D * H * W).repeat(1, C, 1))
    fse_val = torch.gather(volume, 2,
                           (iz_fse * ID ** 2 + iy_fse * IW + ix_fse).long().view(N, 1, D * H * W).repeat(1, C, 1))

    out_val = (
        # back
            bnw_val.view(N, C, D, H, W) * bnw.view(N, 1, D, H, W) +
            bne_val.view(N, C, D, H, W) * bne.view(N, 1, D, H, W) +
            bsw_val.view(N, C, D, H, W) * bsw.view(N, 1, D, H, W) +
            bse_val.view(N, C, D, H, W) * bse.view(N, 1, D, H, W) +
            # front
            fnw_val.view(N, C, D, H, W) * fnw.view(N, 1, D, H, W) +
            fne_val.view(N, C, D, H, W) * fne.view(N, 1, D, H, W) +
            fsw_val.view(N, C, D, H, W) * fsw.view(N, 1, D, H, W) +
            fse_val.view(N, C, D, H, W) * fse.view(N, 1, D, H, W)

    )

    # * zero padding
    out_val = torch.where(mask, out_val, torch.zeros_like(out_val).float().to(out_val.device))

    return out_val


# Interpolation kernel
def get_weight(s, a=-0.5):
    mask_0 = (torch.abs(s) >= 0) & (torch.abs(s) <= 1)
    mask_1 = (torch.abs(s) > 1) & (torch.abs(s) <= 2)
    mask_2 = torch.abs(s) > 2

    weight = torch.zeros_like(s).to(s.device)
    weight = torch.where(mask_0, (a + 2) * (torch.abs(s) ** 3) - (a + 3) * (torch.abs(s) ** 2) + 1, weight)
    weight = torch.where(mask_1,
                         a * (torch.abs(s) ** 3) - (5 * a) * (torch.abs(s) ** 2) + (8 * a) * torch.abs(s) - 4 * a,
                         weight)

    # if (torch.abs(s) >= 0) & (torch.abs(s) <= 1):
    #     return (a + 2) * (torch.abs(s) ** 3) - (a + 3) * (torch.abs(s) ** 2) + 1
    #
    # elif (torch.abs(s) > 1) & (torch.abs(s) <= 2):
    #     return a * (torch.abs(s) ** 3) - (5 * a) * (torch.abs(s) ** 2) + (8 * a) * torch.abs(s) - 4 * a
    # return 0

    return weight


def cubic_interpolate(p, x):
    """
    one dimensional cubic interpolation
    :param p: [N, 4]  (4) should be in order
    :param x: [N]
    :return:
    """
    return p[:, 1] + 0.5 * x * (p[:, 2] - p[:, 0] + x * (
            2.0 * p[:, 0] - 5.0 * p[:, 1] + 4.0 * p[:, 2] - p[:, 3] + x * (
            3.0 * (p[:, 1] - p[:, 2]) + p[:, 3] - p[:, 0])))


def bicubic_interpolate(p, x, y, if_batch=True):
    """
    two dimensional cubic interpolation
    :param p: [N, 4, 4]
    :param x: [N]
    :param y: [N]
    :return:
    """
    num = p.shape[0]

    if not if_batch:
        arr0 = cubic_interpolate(p[:, 0, :], x)  # [N]
        arr1 = cubic_interpolate(p[:, 1, :], x)
        arr2 = cubic_interpolate(p[:, 2, :], x)
        arr3 = cubic_interpolate(p[:, 3, :], x)
        return cubic_interpolate(torch.stack([arr0, arr1, arr2, arr3], dim=-1), y)  # [N]
    else:
        x = x[:, None].repeat(1, 4).view(-1)
        p = p.contiguous().view(num * 4, 4)
        arr = cubic_interpolate(p, x)
        arr = arr.view(num, 4)

        return cubic_interpolate(arr, y)


def tricubic_interpolate(p, x, y, z):
    """
    three dimensional cubic interpolation
    :param p: [N,4,4,4]
    :param x: [N]
    :param y: [N]
    :param z: [N]
    :return:
    """
    num = p.shape[0]

    arr0 = bicubic_interpolate(p[:, 0, :, :], x, y)  # [N]
    arr1 = bicubic_interpolate(p[:, 1, :, :], x, y)
    arr2 = bicubic_interpolate(p[:, 2, :, :], x, y)
    arr3 = bicubic_interpolate(p[:, 3, :, :], x, y)

    return cubic_interpolate(torch.stack([arr0, arr1, arr2, arr3], dim=-1), z)  # [N]


def cubic_interpolate_batch(p, x):
    """
    one dimensional cubic interpolation
    :param p: [B, N, 4]  (4) should be in order
    :param x: [B, N]
    :return:
    """
    return p[:, :, 1] + 0.5 * x * (p[:, :, 2] - p[:, :, 0] + x * (
            2.0 * p[:, :, 0] - 5.0 * p[:, :, 1] + 4.0 * p[:, :, 2] - p[:, :, 3] + x * (
            3.0 * (p[:, :, 1] - p[:, :, 2]) + p[:, :, 3] - p[:, :, 0])))


def bicubic_interpolate_batch(p, x, y):
    """
    two dimensional cubic interpolation
    :param p: [B, N, 4, 4]
    :param x: [B, N]
    :param y: [B, N]
    :return:
    """
    B, N, _, _ = p.shape

    x = x[:, :, None].repeat(1, 1, 4).view(B, N * 4)  # [B, N*4]
    arr = cubic_interpolate_batch(p.contiguous().view(B, N * 4, 4), x)
    arr = arr.view(B, N, 4)
    return cubic_interpolate_batch(arr, y)  # [B, N]


# * batch version cannot speed up training
def tricubic_interpolate_batch(p, x, y, z):
    """
    three dimensional cubic interpolation
    :param p: [N,4,4,4]
    :param x: [N]
    :param y: [N]
    :param z: [N]
    :return:
    """
    N = p.shape[0]

    x = x[None, :].repeat(4, 1)
    y = y[None, :].repeat(4, 1)

    p = p.permute(1, 0, 2, 3).contiguous()

    arr = bicubic_interpolate_batch(p[:, :, :, :], x, y)  # [4, N]

    arr = arr.permute(1, 0).contiguous()  # [N, 4]

    return cubic_interpolate(arr, z)  # [N]


def tricubic_sample_3d(volume, optical):
    """
    tricubic sampling; can guarantee continuous gradient  (interpolation border)
    :param volume: [B, C, ID, IH, IW]
    :param optical: [B, D, H, W, 3]
    :param sample_num:
    :return:
    """

    @torch.no_grad()
    def get_shifts(x):
        x1 = -1 * (1 + x - torch.floor(x))
        x2 = -1 * (x - torch.floor(x))
        x3 = torch.floor(x) + 1 - x
        x4 = torch.floor(x) + 2 - x

        return torch.stack([x1, x2, x3, x4], dim=-1)  # (B,d,h,w,4)

    N, C, ID, IH, IW = volume.shape
    _, D, H, W, _ = optical.shape

    device = volume.device

    ix = optical[..., 0]
    iy = optical[..., 1]
    iz = optical[..., 2]

    ix = ((ix + 1) / 2) * (IW - 1)  # (B,d,h,w)
    iy = ((iy + 1) / 2) * (IH - 1)
    iz = ((iz + 1) / 2) * (ID - 1)

    ix = ix.view(-1)
    iy = iy.view(-1)
    iz = iz.view(-1)

    with torch.no_grad():
        shifts_x = get_shifts(ix).view(-1, 4)  # (B*d*h*w,4)
        shifts_y = get_shifts(iy).view(-1, 4)
        shifts_z = get_shifts(iz).view(-1, 4)

        perm_weights = torch.ones([N * D * H * W, 4 * 4 * 4]).long().to(device)
        perm = torch.cumsum(perm_weights, dim=-1) - 1  # (B*d*h*w,64)

        perm_z = perm // 16  # [N*D*H*W, num]
        perm_y = (perm - perm_z * 16) // 4
        perm_x = (perm - perm_z * 16 - perm_y * 4)

        shifts_x = torch.gather(shifts_x, 1, perm_x)  # [N*D*H*W, num]
        shifts_y = torch.gather(shifts_y, 1, perm_y)
        shifts_z = torch.gather(shifts_z, 1, perm_z)

        ix_target = (ix[:, None] + shifts_x).long()  # [N*D*H*W, num]
        iy_target = (iy[:, None] + shifts_y).long()
        iz_target = (iz[:, None] + shifts_z).long()

        torch.clamp(ix_target, 0, IW - 1, out=ix_target)
        torch.clamp(iy_target, 0, IH - 1, out=iy_target)
        torch.clamp(iz_target, 0, ID - 1, out=iz_target)

    local_dist_x = ix - ix_target[:, 1]  # ! attention here is [:, 1]
    local_dist_y = iy - iy_target[:, 1 + 4]
    local_dist_z = iz - iz_target[:, 1 + 16]

    local_dist_x = local_dist_x.view(N, 1, D * H * W).repeat(1, C, 1).view(-1)
    local_dist_y = local_dist_y.view(N, 1, D * H * W).repeat(1, C, 1).view(-1)
    local_dist_z = local_dist_z.view(N, 1, D * H * W).repeat(1, C, 1).view(-1)

    # ! attention: IW is correct
    idx_target = iz_target * ID ** 2 + iy_target * IW + ix_target  # [N*D*H*W, num]

    volume = volume.view(N, C, ID * IH * IW)

    out = torch.gather(volume, 2,
                       idx_target.view(N, 1, D * H * W * 64).repeat(1, C, 1))
    out = out.view(N * C * D * H * W, 4, 4, 4)

    # - tricubic_interpolate() is a bit faster than tricubic_interpolate_batch()
    final = tricubic_interpolate(out, local_dist_x, local_dist_y, local_dist_z).view(N, C, D, H, W)  # [N,C,D,H,W]

    return final



if __name__ == "__main__":
    # image = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).view(1, 3, 1, 3)
    #
    # optical = torch.Tensor([0.9, 0.5, 0.6, -0.7]).view(1, 1, 2, 2)
    #
    # print(grid_sample_2d(image, optical))
    #
    # print(F.grid_sample(image, optical, padding_mode='border', align_corners=True))

    from ops.generate_grids import generate_grid

    p = torch.tensor([x for x in range(4)]).view(1, 4).float()

    v = cubic_interpolate(p, torch.tensor([0.5]).view(1))
    # v = bicubic_interpolate(p, torch.tensor([2/3]).view(1) , torch.tensor([2/3]).view(1))

    vsize = 9
    volume = generate_grid([vsize, vsize, vsize], 1)  # [1,3,10,10,10]
    # volume = torch.tensor([x for x in range(1000)]).view(1, 1, 10, 10, 10).float()
    X, Y, Z = 0, 0, 6
    x = 2 * X / (vsize - 1) - 1
    y = 2 * Y / (vsize - 1) - 1
    z = 2 * Z / (vsize - 1) - 1

    # print(volume[:, :, Z, Y, X])

    # volume = volume.view(1, 3, -1)
    # xx = volume[:, :, Z * 9*9 + Y * 9 + X]

    optical = torch.Tensor([-0.6, -0.7, 0.5, 0.3, 0.5, 0.5]).view(1, 1, 1, 2, 3)

    print(F.grid_sample(volume, optical, padding_mode='border', align_corners=True))
    print(grid_sample_3d(volume, optical))
    print(tricubic_sample_3d(volume, optical))
    # target, relative_coords = implicit_sample_3d(volume, optical, 1)
    # print(target)