Text-to-3D
image-to-3d
File size: 12,969 Bytes
216282e
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216282e
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216282e
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216282e
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os, torch
import numpy as np

import torch.nn.functional as F

def build_patch_offset(h_patch_size):
    offsets = torch.arange(-h_patch_size, h_patch_size + 1)
    return torch.stack(torch.meshgrid(offsets, offsets)[::-1], dim=-1).view(1, -1, 2)  # nb_pixels_patch * 2


def gen_rays_from_single_image(H, W, image, intrinsic, c2w, depth=None, mask=None):
    """
    generate rays in world space, for image image
    :param H:
    :param W:
    :param intrinsics: [3,3]
    :param c2ws: [4,4]
    :return:
    """
    device = image.device
    ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
                            torch.linspace(0, W - 1, W), indexing="ij")  # pytorch's meshgrid has indexing='ij'
    p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1)  # H, W, 3

    # normalized ndc uv coordinates, (-1, 1)
    ndc_u = 2 * xs / (W - 1) - 1
    ndc_v = 2 * ys / (H - 1) - 1
    rays_ndc_uv = torch.stack([ndc_u, ndc_v], dim=-1).view(-1, 2).float().to(device)

    intrinsic_inv = torch.inverse(intrinsic)

    p = p.view(-1, 3).float().to(device)  # N_rays, 3
    p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze()  # N_rays, 3
    rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)  # N_rays, 3
    rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze()  # N_rays, 3
    rays_o = c2w[None, :3, 3].expand(rays_v.shape)  # N_rays, 3

    image = image.permute(1, 2, 0)
    color = image.view(-1, 3)
    depth = depth.view(-1, 1) if depth is not None else None
    mask = mask.view(-1, 1) if mask is not None else torch.ones([H * W, 1]).to(device)
    sample = {
        'rays_o': rays_o,
        'rays_v': rays_v,
        'rays_ndc_uv': rays_ndc_uv,
        'rays_color': color,
        # 'rays_depth': depth,
        'rays_mask': mask,
        'rays_norm_XYZ_cam': p  # - XYZ_cam, before multiply depth
    }
    if depth is not None:
        sample['rays_depth'] = depth

    return sample


def gen_random_rays_from_single_image(H, W, N_rays, image, intrinsic, c2w, depth=None, mask=None, dilated_mask=None,
                                      importance_sample=False, h_patch_size=3):
    """
    generate random rays in world space, for a single image
    :param H:
    :param W:
    :param N_rays:
    :param image: [3, H, W]
    :param intrinsic: [3,3]
    :param c2w: [4,4]
    :param depth: [H, W]
    :param mask: [H, W]
    :return:
    """
    device = image.device

    if dilated_mask is None:
        dilated_mask = mask

    if not importance_sample:
        pixels_x = torch.randint(low=0, high=W, size=[N_rays])
        pixels_y = torch.randint(low=0, high=H, size=[N_rays])
    elif importance_sample and dilated_mask is not None:  # sample more pts in the valid mask regions
        pixels_x_1 = torch.randint(low=0, high=W, size=[N_rays // 4])
        pixels_y_1 = torch.randint(low=0, high=H, size=[N_rays // 4])

        ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
                                torch.linspace(0, W - 1, W), indexing="ij")  # pytorch's meshgrid has indexing='ij'
        p = torch.stack([xs, ys], dim=-1)  # H, W, 2

        try:
            p_valid = p[dilated_mask > 0]  # [num, 2]
            random_idx = torch.randint(low=0, high=p_valid.shape[0], size=[N_rays // 4 * 3])
        except:
            print("dilated_mask.shape: ", dilated_mask.shape)
            print("dilated_mask valid number", dilated_mask.sum())

            raise ValueError("hhhh")
        p_select = p_valid[random_idx]  # [N_rays//2, 2]
        pixels_x_2 = p_select[:, 0]
        pixels_y_2 = p_select[:, 1]

        pixels_x = torch.cat([pixels_x_1, pixels_x_2], dim=0).to(torch.int64)
        pixels_y = torch.cat([pixels_y_1, pixels_y_2], dim=0).to(torch.int64)

    # - crop patch from images
    offsets = build_patch_offset(h_patch_size).to(device)
    grid_patch = torch.stack([pixels_x, pixels_y], dim=-1).view(-1, 1, 2) + offsets.float()  # [N_pts, Npx, 2]
    patch_mask = (pixels_x > h_patch_size) * (pixels_x < (W - h_patch_size)) * (pixels_y > h_patch_size) * (
            pixels_y < H - h_patch_size)  # [N_pts]
    grid_patch_u = 2 * grid_patch[:, :, 0] / (W - 1) - 1
    grid_patch_v = 2 * grid_patch[:, :, 1] / (H - 1) - 1
    grid_patch_uv = torch.stack([grid_patch_u, grid_patch_v], dim=-1)  # [N_pts, Npx, 2]
    patch_color = F.grid_sample(image[None, :, :, :], grid_patch_uv[None, :, :, :], mode='bilinear',
                                padding_mode='zeros',align_corners=True)[0]  # [3, N_pts, Npx]
    patch_color = patch_color.permute(1, 2, 0).contiguous()

    # normalized ndc uv coordinates, (-1, 1)
    ndc_u = 2 * pixels_x / (W - 1) - 1
    ndc_v = 2 * pixels_y / (H - 1) - 1
    rays_ndc_uv = torch.stack([ndc_u, ndc_v], dim=-1).view(-1, 2).float().to(device)

    image = image.permute(1, 2, 0)  # H ,W, C
    color = image[(pixels_y, pixels_x)]  # N_rays, 3

    if mask is not None:
        mask = mask[(pixels_y, pixels_x)]  # N_rays
        patch_mask = patch_mask * mask  # N_rays
        mask = mask.view(-1, 1)
    else:
        mask = torch.ones([N_rays, 1])

    if depth is not None:
        depth = depth[(pixels_y, pixels_x)]  # N_rays
        depth = depth.view(-1, 1)

    intrinsic_inv = torch.inverse(intrinsic)

    p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float().to(device)  # N_rays, 3
    p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze()  # N_rays, 3
    rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)  # N_rays, 3
    rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze()  # N_rays, 3
    rays_o = c2w[None, :3, 3].expand(rays_v.shape)  # N_rays, 3

    sample = {
        'rays_o': rays_o,
        'rays_v': rays_v,
        'rays_ndc_uv': rays_ndc_uv,
        'rays_color': color,
        # 'rays_depth': depth,
        'rays_mask': mask,
        'rays_norm_XYZ_cam': p,  # - XYZ_cam, before multiply depth,
        'rays_patch_color': patch_color,
        'rays_patch_mask': patch_mask.view(-1, 1)
    }

    if depth is not None:
        sample['rays_depth'] = depth

    return sample


def gen_random_rays_of_patch_from_single_image(H, W, N_rays, num_neighboring_pts, patch_size,
                                               image, intrinsic, c2w, depth=None, mask=None):
    """
    generate random rays in world space, for a single image
    sample rays from local patches
    :param H:
    :param W:
    :param N_rays: the number of center rays of patches
    :param image: [3, H, W]
    :param intrinsic: [3,3]
    :param c2w: [4,4]
    :param depth: [H, W]
    :param mask: [H, W]
    :return:
    """
    device = image.device
    patch_radius_max = patch_size // 2

    unit_u = 2 / (W - 1)
    unit_v = 2 / (H - 1)

    pixels_x_center = torch.randint(low=patch_size, high=W - patch_size, size=[N_rays])
    pixels_y_center = torch.randint(low=patch_size, high=H - patch_size, size=[N_rays])

    # normalized ndc uv coordinates, (-1, 1)
    ndc_u_center = 2 * pixels_x_center / (W - 1) - 1
    ndc_v_center = 2 * pixels_y_center / (H - 1) - 1
    ndc_uv_center = torch.stack([ndc_u_center, ndc_v_center], dim=-1).view(-1, 2).float().to(device)[:, None,
                    :]  # [N_rays, 1, 2]

    shift_u, shift_v = torch.rand([N_rays, num_neighboring_pts, 1]), torch.rand(
        [N_rays, num_neighboring_pts, 1])  # uniform distribution of [0,1)
    shift_u = 2 * (shift_u - 0.5)  # mapping to [-1, 1)
    shift_v = 2 * (shift_v - 0.5)

    # - avoid sample points which are too close to center point
    shift_uv = torch.cat([(shift_u * patch_radius_max) * unit_u, (shift_v * patch_radius_max) * unit_v],
                         dim=-1)  # [N_rays, num_npts, 2]
    neighboring_pts_uv = ndc_uv_center + shift_uv  # [N_rays, num_npts, 2]

    sampled_pts_uv = torch.cat([ndc_uv_center, neighboring_pts_uv], dim=1)  # concat the center point

    # sample the gts
    color = F.grid_sample(image[None, :, :, :], sampled_pts_uv[None, :, :, :], mode='bilinear',
                          align_corners=True)[0]  # [3, N_rays, num_npts]
    depth = F.grid_sample(depth[None, None, :, :], sampled_pts_uv[None, :, :, :], mode='bilinear',
                          align_corners=True)[0]  # [1, N_rays, num_npts]

    mask = F.grid_sample(mask[None, None, :, :].to(torch.float32), sampled_pts_uv[None, :, :, :], mode='nearest',
                         align_corners=True).to(torch.int64)[0]  # [1, N_rays, num_npts]

    intrinsic_inv = torch.inverse(intrinsic)

    sampled_pts_uv = sampled_pts_uv.view(N_rays * (1 + num_neighboring_pts), 2)
    color = color.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 3)
    depth = depth.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 1)
    mask = mask.permute(1, 2, 0).contiguous().view(N_rays * (1 + num_neighboring_pts), 1)

    pixels_x = (sampled_pts_uv[:, 0] + 1) * (W - 1) / 2
    pixels_y = (sampled_pts_uv[:, 1] + 1) * (H - 1) / 2
    p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float().to(device)  # N_rays*num_pts, 3
    p = torch.matmul(intrinsic_inv[None, :3, :3], p[:, :, None]).squeeze()  # N_rays*num_pts, 3
    rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)  # N_rays*num_pts, 3
    rays_v = torch.matmul(c2w[None, :3, :3], rays_v[:, :, None]).squeeze()  # N_rays*num_pts, 3
    rays_o = c2w[None, :3, 3].expand(rays_v.shape)  # N_rays*num_pts, 3

    sample = {
        'rays_o': rays_o,
        'rays_v': rays_v,
        'rays_ndc_uv': sampled_pts_uv,
        'rays_color': color,
        'rays_depth': depth,
        'rays_mask': mask,
        # 'rays_norm_XYZ_cam': p  # - XYZ_cam, before multiply depth
    }

    return sample


def gen_random_rays_from_batch_images(H, W, N_rays, images, intrinsics, c2ws, depths=None, masks=None):
    """

    :param H:
    :param W:
    :param N_rays:
    :param images: [B,3,H,W]
    :param intrinsics: [B, 3, 3]
    :param c2ws: [B, 4, 4]
    :param depths: [B,H,W]
    :param masks: [B,H,W]
    :return:
    """
    assert len(images.shape) == 4

    rays_o = []
    rays_v = []
    rays_color = []
    rays_depth = []
    rays_mask = []
    for i in range(images.shape[0]):
        sample = gen_random_rays_from_single_image(H, W, N_rays, images[i], intrinsics[i], c2ws[i],
                                                   depth=depths[i] if depths is not None else None,
                                                   mask=masks[i] if masks is not None else None)
        rays_o.append(sample['rays_o'])
        rays_v.append(sample['rays_v'])
        rays_color.append(sample['rays_color'])
        if depths is not None:
            rays_depth.append(sample['rays_depth'])
        if masks is not None:
            rays_mask.append(sample['rays_mask'])

    sample = {
        'rays_o': torch.stack(rays_o, dim=0),  # [batch, N_rays, 3]
        'rays_v': torch.stack(rays_v, dim=0),
        'rays_color': torch.stack(rays_color, dim=0),
        'rays_depth': torch.stack(rays_depth, dim=0) if depths is not None else None,
        'rays_mask': torch.stack(rays_mask, dim=0) if masks is not None else None
    }
    return sample


from scipy.spatial.transform import Rotation as Rot
from scipy.spatial.transform import Slerp


def gen_rays_between(c2w_0, c2w_1, intrinsic, ratio, H, W, resolution_level=1):
    device = c2w_0.device

    l = resolution_level
    tx = torch.linspace(0, W - 1, W // l)
    ty = torch.linspace(0, H - 1, H // l)
    pixels_x, pixels_y = torch.meshgrid(tx, ty, indexing="ij")
    p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).to(device)  # W, H, 3

    intrinsic_inv = torch.inverse(intrinsic[:3, :3])
    p = torch.matmul(intrinsic_inv[None, None, :3, :3], p[:, :, :, None]).squeeze()  # W, H, 3
    rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)  # W, H, 3
    trans = c2w_0[:3, 3] * (1.0 - ratio) + c2w_1[:3, 3] * ratio

    pose_0 = c2w_0.detach().cpu().numpy()
    pose_1 = c2w_1.detach().cpu().numpy()
    pose_0 = np.linalg.inv(pose_0)
    pose_1 = np.linalg.inv(pose_1)
    rot_0 = pose_0[:3, :3]
    rot_1 = pose_1[:3, :3]
    rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
    key_times = [0, 1]
    key_rots = [rot_0, rot_1]
    slerp = Slerp(key_times, rots)
    rot = slerp(ratio)
    pose = np.diag([1.0, 1.0, 1.0, 1.0])
    pose = pose.astype(np.float32)
    pose[:3, :3] = rot.as_matrix()
    pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
    pose = np.linalg.inv(pose)

    c2w = torch.from_numpy(pose).to(device)
    rot = torch.from_numpy(pose[:3, :3]).cuda()
    trans = torch.from_numpy(pose[:3, 3]).cuda()
    rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze()  # W, H, 3
    rays_o = trans[None, None, :3].expand(rays_v.shape)  # W, H, 3
    return c2w, rays_o.transpose(0, 1).contiguous().view(-1, 3), rays_v.transpose(0, 1).contiguous().view(-1, 3)