File size: 2,642 Bytes
854f0d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import torch
import torch.nn.functional as F
import numpy as np
from math import exp, sqrt
class NCC(torch.nn.Module):
def __init__(self, h_patch_size, mode='rgb'):
super(NCC, self).__init__()
self.window_size = 2 * h_patch_size + 1
self.mode = mode # 'rgb' or 'gray'
self.channel = 3
self.register_buffer("window", create_window(self.window_size, self.channel))
def forward(self, img_pred, img_gt):
"""
:param img_pred: [Npx, nviews, npatch, c]
:param img_gt: [Npx, npatch, c]
:return:
"""
ntotpx, nviews, npatch, channels = img_pred.shape
patch_size = int(sqrt(npatch))
patch_img_pred = img_pred.reshape(ntotpx, nviews, patch_size, patch_size, channels).permute(0, 1, 4, 2,
3).contiguous()
patch_img_gt = img_gt.reshape(ntotpx, patch_size, patch_size, channels).permute(0, 3, 1, 2)
return _ncc(patch_img_pred, patch_img_gt, self.window, self.channel)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel, std=1.5):
_1D_window = gaussian(window_size, std).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def _ncc(pred, gt, window, channel):
ntotpx, nviews, nc, h, w = pred.shape
flat_pred = pred.view(-1, nc, h, w)
mu1 = F.conv2d(flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc)
mu2 = F.conv2d(gt, window, padding=0, groups=channel).view(ntotpx, nc)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2).unsqueeze(1) # (ntotpx, 1, nc)
sigma1_sq = F.conv2d(flat_pred * flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc) - mu1_sq
sigma2_sq = F.conv2d(gt * gt, window, padding=0, groups=channel).view(ntotpx, 1, 3) - mu2_sq
sigma1 = torch.sqrt(sigma1_sq + 1e-4)
sigma2 = torch.sqrt(sigma2_sq + 1e-4)
pred_norm = (pred - mu1[:, :, :, None, None]) / (sigma1[:, :, :, None, None] + 1e-8) # [ntotpx, nviews, nc, h, w]
gt_norm = (gt[:, None, :, :, :] - mu2[:, None, :, None, None]) / (
sigma2[:, :, :, None, None] + 1e-8) # ntotpx, nc, h, w
ncc = F.conv2d((pred_norm * gt_norm).view(-1, nc, h, w), window, padding=0, groups=channel).view(
ntotpx, nviews, nc)
return torch.mean(ncc, dim=2)
|