Text-to-3D
image-to-3d
File size: 20,807 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# The codes are partly from IBRNet

import torch
import torch.nn.functional as F
from models.render_utils import sample_ptsFeatures_from_featureMaps, sample_ptsFeatures_from_featureVolume

def safe_l2_normalize(x, dim=None, eps=1e-6):
    return F.normalize(x, p=2, dim=dim, eps=eps)

class Projector():
    """
    Obtain features from geometryVolume and rendering_feature_maps for generalized rendering
    """

    def compute_angle(self, xyz, query_c2w, supporting_c2ws):
        """

        :param xyz: [N_rays, n_samples,3 ]
        :param query_c2w: [1,4,4]
        :param supporting_c2ws: [n,4,4]
        :return:
        """
        N_rays, n_samples, _ = xyz.shape
        num_views = supporting_c2ws.shape[0]
        xyz = xyz.reshape(-1, 3)

        ray2tar_pose = (query_c2w[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0))
        ray2tar_pose /= (torch.norm(ray2tar_pose, dim=-1, keepdim=True) + 1e-6)
        ray2support_pose = (supporting_c2ws[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0))
        ray2support_pose /= (torch.norm(ray2support_pose, dim=-1, keepdim=True) + 1e-6)
        ray_diff = ray2tar_pose - ray2support_pose
        ray_diff_norm = torch.norm(ray_diff, dim=-1, keepdim=True)
        ray_diff_dot = torch.sum(ray2tar_pose * ray2support_pose, dim=-1, keepdim=True)
        ray_diff_direction = ray_diff / torch.clamp(ray_diff_norm, min=1e-6)
        ray_diff = torch.cat([ray_diff_direction, ray_diff_dot], dim=-1)
        ray_diff = ray_diff.reshape((num_views, N_rays, n_samples, 4))  # the last dimension (4) is dot-product
        return ray_diff.detach()


    def compute_angle_view_independent(self, xyz, surface_normals, supporting_c2ws):
        """

        :param xyz: [N_rays, n_samples,3 ]
        :param surface_normals: [N_rays, n_samples,3 ]
        :param supporting_c2ws: [n,4,4]
        :return:
        """
        N_rays, n_samples, _ = xyz.shape
        num_views = supporting_c2ws.shape[0]
        xyz = xyz.reshape(-1, 3)

        ray2tar_pose = surface_normals
        ray2support_pose = (supporting_c2ws[:, :3, 3].unsqueeze(1) - xyz.unsqueeze(0))
        ray2support_pose /= (torch.norm(ray2support_pose, dim=-1, keepdim=True) + 1e-6)
        ray_diff = ray2tar_pose - ray2support_pose
        ray_diff_norm = torch.norm(ray_diff, dim=-1, keepdim=True)
        ray_diff_dot = torch.sum(ray2tar_pose * ray2support_pose, dim=-1, keepdim=True)
        ray_diff_direction = ray_diff / torch.clamp(ray_diff_norm, min=1e-6)
        ray_diff = torch.cat([ray_diff_direction, ray_diff_dot], dim=-1)
        ray_diff = ray_diff.reshape((num_views, N_rays, n_samples, 4))  # the last dimension (4) is dot-product, 
                                                                        # and the first three dimensions is the normalized ray diff vector
        return ray_diff.detach()

    @torch.no_grad()
    def compute_z_diff(self, xyz, w2cs, intrinsics, pred_depth_values):
        """
        compute the depth difference of query pts projected on the image and the predicted depth values of the image
        :param xyz:  [N_rays, n_samples,3 ]
        :param w2cs:  [N_views, 4, 4]
        :param intrinsics: [N_views, 3, 3]
        :param pred_depth_values: [N_views, N_rays, n_samples,1 ]
        :param pred_depth_masks: [N_views, N_rays, n_samples]
        :return:
        """
        device = xyz.device
        N_views = w2cs.shape[0]
        N_rays, n_samples, _ = xyz.shape
        proj_matrix = torch.matmul(intrinsics, w2cs[:, :3, :])

        proj_rot = proj_matrix[:, :3, :3]
        proj_trans = proj_matrix[:, :3, 3:]

        batch_xyz = xyz.permute(2, 0, 1).contiguous().view(1, 3, N_rays * n_samples).repeat(N_views, 1, 1)

        proj_xyz = proj_rot.bmm(batch_xyz) + proj_trans

        # X = proj_xyz[:, 0]
        # Y = proj_xyz[:, 1]
        Z = proj_xyz[:, 2].clamp(min=1e-3)  # [N_views, N_rays*n_samples]
        proj_z = Z.view(N_views, N_rays, n_samples, 1)

        z_diff = proj_z - pred_depth_values  # [N_views, N_rays, n_samples,1 ]

        return z_diff

    def compute(self,
                pts,
                # * 3d geometry feature volumes
                geometryVolume=None,
                geometryVolumeMask=None,
                vol_dims=None,
                partial_vol_origin=None,
                vol_size=None,
                # * 2d rendering feature maps
                rendering_feature_maps=None,
                color_maps=None,
                w2cs=None,
                intrinsics=None,
                img_wh=None,
                query_img_idx=0,  # the index of the N_views dim for rendering
                query_c2w=None,
                pred_depth_maps=None,   # no use here
                pred_depth_masks=None   # no use here
                ):
        """
        extract features of pts for rendering
        :param pts:
        :param geometryVolume:
        :param vol_dims:
        :param partial_vol_origin:
        :param vol_size:
        :param rendering_feature_maps:
        :param color_maps:
        :param w2cs:
        :param intrinsics:
        :param img_wh:
        :param rendering_img_idx: by default, we render the first view of w2cs
        :return:
        """
        device = pts.device
        c2ws = torch.inverse(w2cs)

        if len(pts.shape) == 2:
            pts = pts[None, :, :]

        N_rays, n_samples, _ = pts.shape
        N_views = rendering_feature_maps.shape[0]  # shape (N_views, C, H, W)

        supporting_img_idxs = torch.LongTensor([x for x in range(N_views) if x != query_img_idx]).to(device)
        query_img_idx = torch.LongTensor([query_img_idx]).to(device)

        if query_c2w is None and query_img_idx > -1:
            query_c2w = torch.index_select(c2ws, 0, query_img_idx)
            supporting_c2ws = torch.index_select(c2ws, 0, supporting_img_idxs)
            supporting_w2cs = torch.index_select(w2cs, 0, supporting_img_idxs)
            supporting_rendering_feature_maps = torch.index_select(rendering_feature_maps, 0, supporting_img_idxs)
            supporting_color_maps = torch.index_select(color_maps, 0, supporting_img_idxs)
            supporting_intrinsics = torch.index_select(intrinsics, 0, supporting_img_idxs)

            if pred_depth_maps is not None:
                supporting_depth_maps = torch.index_select(pred_depth_maps, 0, supporting_img_idxs)
                supporting_depth_masks = torch.index_select(pred_depth_masks, 0, supporting_img_idxs)
            # print("N_supporting_views: ", N_views - 1)
            N_supporting_views = N_views - 1
        else:
            supporting_c2ws = c2ws
            supporting_w2cs = w2cs
            supporting_rendering_feature_maps = rendering_feature_maps
            supporting_color_maps = color_maps
            supporting_intrinsics = intrinsics
            supporting_depth_maps = pred_depth_masks
            supporting_depth_masks = pred_depth_masks
            # print("N_supporting_views: ", N_views)
            N_supporting_views = N_views
        # import ipdb; ipdb.set_trace()
        if geometryVolume is not None:
            # * sample feature of pts from 3D feature volume
            pts_geometry_feature, pts_geometry_masks_0 = sample_ptsFeatures_from_featureVolume(
                pts, geometryVolume, vol_dims,
                partial_vol_origin, vol_size)  # [N_rays, n_samples, C], [N_rays, n_samples]

            if len(geometryVolumeMask.shape) == 3:
                geometryVolumeMask = geometryVolumeMask[None, :, :, :]

            pts_geometry_masks_1, _ = sample_ptsFeatures_from_featureVolume(
                pts, geometryVolumeMask.to(geometryVolume.dtype), vol_dims,
                partial_vol_origin, vol_size)  # [N_rays, n_samples, C]

            pts_geometry_masks = pts_geometry_masks_0 & (pts_geometry_masks_1[..., 0] > 0)
        else:
            pts_geometry_feature = None
            pts_geometry_masks = None

        # * sample feature of pts from 2D feature maps
        pts_rendering_feats, pts_rendering_mask = sample_ptsFeatures_from_featureMaps(
            pts, supporting_rendering_feature_maps, supporting_w2cs,
            supporting_intrinsics, img_wh,
            return_mask=True)  # [N_views, C, N_rays, n_samples], # [N_views, N_rays, n_samples]
        # import ipdb; ipdb.set_trace()
        # * size (N_views, N_rays*n_samples, c)
        pts_rendering_feats = pts_rendering_feats.permute(0, 2, 3, 1).contiguous()

        pts_rendering_colors = sample_ptsFeatures_from_featureMaps(pts, supporting_color_maps, supporting_w2cs,
                                                                   supporting_intrinsics, img_wh)
        # * size (N_views, N_rays*n_samples, c)
        pts_rendering_colors = pts_rendering_colors.permute(0, 2, 3, 1).contiguous()

        rgb_feats = torch.cat([pts_rendering_colors, pts_rendering_feats], dim=-1)  # [N_views, N_rays, n_samples, 3+c]


        ray_diff = self.compute_angle(pts, query_c2w, supporting_c2ws)  # [N_views, N_rays, n_samples, 4]
        # import ipdb; ipdb.set_trace()
        if pts_geometry_masks is not None:
            final_mask = pts_geometry_masks[None, :, :].repeat(N_supporting_views, 1, 1) & \
                         pts_rendering_mask  # [N_views, N_rays, n_samples]
        else:
            final_mask = pts_rendering_mask
        # import ipdb; ipdb.set_trace()
        z_diff, pts_pred_depth_masks = None, None
        
        if pred_depth_maps is not None:
            pts_pred_depth_values = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_maps, supporting_w2cs,
                                                                        supporting_intrinsics, img_wh)
            pts_pred_depth_values = pts_pred_depth_values.permute(0, 2, 3,
                                                                  1).contiguous()  # (N_views, N_rays*n_samples, 1)

            # - pts_pred_depth_masks are critical than final_mask,
            # - the ray containing few invalid pts will be treated invalid
            pts_pred_depth_masks = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_masks.float(),
                                                                       supporting_w2cs,
                                                                       supporting_intrinsics, img_wh)
            
            pts_pred_depth_masks = pts_pred_depth_masks.permute(0, 2, 3, 1).contiguous()[:, :, :,
                                   0]  # (N_views, N_rays*n_samples)

            z_diff = self.compute_z_diff(pts, supporting_w2cs, supporting_intrinsics, pts_pred_depth_values)
        # import ipdb; ipdb.set_trace()
        return pts_geometry_feature, rgb_feats, ray_diff, final_mask, z_diff, pts_pred_depth_masks


    def compute_view_independent(   
                                    self,
                                    pts,
                                    # * 3d geometry feature volumes
                                    geometryVolume=None,
                                    geometryVolumeMask=None,
                                    sdf_network=None,
                                    lod=0,
                                    vol_dims=None,
                                    partial_vol_origin=None,
                                    vol_size=None,
                                    # * 2d rendering feature maps
                                    rendering_feature_maps=None,
                                    color_maps=None,
                                    w2cs=None,
                                    target_candidate_w2cs=None,
                                    intrinsics=None,
                                    img_wh=None,
                                    query_img_idx=0,  # the index of the N_views dim for rendering
                                    query_c2w=None,
                                    pred_depth_maps=None,   # no use here
                                    pred_depth_masks=None   # no use here
                                ):
        """
        extract features of pts for rendering
        :param pts:
        :param geometryVolume:
        :param vol_dims:
        :param partial_vol_origin:
        :param vol_size:
        :param rendering_feature_maps:
        :param color_maps:
        :param w2cs:
        :param intrinsics:
        :param img_wh:
        :param rendering_img_idx: by default, we render the first view of w2cs
        :return:
        """
        device = pts.device
        c2ws = torch.inverse(w2cs)

        if len(pts.shape) == 2:
            pts = pts[None, :, :]

        N_rays, n_samples, _ = pts.shape
        N_views = rendering_feature_maps.shape[0]  # shape (N_views, C, H, W)

        supporting_img_idxs = torch.LongTensor([x for x in range(N_views) if x != query_img_idx]).to(device)
        query_img_idx = torch.LongTensor([query_img_idx]).to(device)

        if query_c2w is None and query_img_idx > -1:
            query_c2w = torch.index_select(c2ws, 0, query_img_idx)
            supporting_c2ws = torch.index_select(c2ws, 0, supporting_img_idxs)
            supporting_w2cs = torch.index_select(w2cs, 0, supporting_img_idxs)
            supporting_rendering_feature_maps = torch.index_select(rendering_feature_maps, 0, supporting_img_idxs)
            supporting_color_maps = torch.index_select(color_maps, 0, supporting_img_idxs)
            supporting_intrinsics = torch.index_select(intrinsics, 0, supporting_img_idxs)

            if pred_depth_maps is not None:
                supporting_depth_maps = torch.index_select(pred_depth_maps, 0, supporting_img_idxs)
                supporting_depth_masks = torch.index_select(pred_depth_masks, 0, supporting_img_idxs)
            # print("N_supporting_views: ", N_views - 1)
            N_supporting_views = N_views - 1
        else:
            supporting_c2ws = c2ws
            supporting_w2cs = w2cs
            supporting_rendering_feature_maps = rendering_feature_maps
            supporting_color_maps = color_maps
            supporting_intrinsics = intrinsics
            supporting_depth_maps = pred_depth_masks
            supporting_depth_masks = pred_depth_masks
            # print("N_supporting_views: ", N_views)
            N_supporting_views = N_views
        # import ipdb; ipdb.set_trace()
        if geometryVolume is not None:
            # * sample feature of pts from 3D feature volume
            pts_geometry_feature, pts_geometry_masks_0 = sample_ptsFeatures_from_featureVolume(
                pts, geometryVolume, vol_dims,
                partial_vol_origin, vol_size)  # [N_rays, n_samples, C], [N_rays, n_samples]

            if len(geometryVolumeMask.shape) == 3:
                geometryVolumeMask = geometryVolumeMask[None, :, :, :]

            pts_geometry_masks_1, _ = sample_ptsFeatures_from_featureVolume(
                pts, geometryVolumeMask.to(geometryVolume.dtype), vol_dims,
                partial_vol_origin, vol_size)  # [N_rays, n_samples, C]

            pts_geometry_masks = pts_geometry_masks_0 & (pts_geometry_masks_1[..., 0] > 0)
        else:
            pts_geometry_feature = None
            pts_geometry_masks = None

        # * sample feature of pts from 2D feature maps
        pts_rendering_feats, pts_rendering_mask = sample_ptsFeatures_from_featureMaps(
            pts, supporting_rendering_feature_maps, supporting_w2cs,
            supporting_intrinsics, img_wh,
            return_mask=True)  # [N_views, C, N_rays, n_samples], # [N_views, N_rays, n_samples]

        # * size (N_views, N_rays*n_samples, c)
        pts_rendering_feats = pts_rendering_feats.permute(0, 2, 3, 1).contiguous()

        pts_rendering_colors = sample_ptsFeatures_from_featureMaps(pts, supporting_color_maps, supporting_w2cs,
                                                                   supporting_intrinsics, img_wh)
        # * size (N_views, N_rays*n_samples, c)
        pts_rendering_colors = pts_rendering_colors.permute(0, 2, 3, 1).contiguous()

        rgb_feats = torch.cat([pts_rendering_colors, pts_rendering_feats], dim=-1)  # [N_views, N_rays, n_samples, 3+c]
        
        # import ipdb; ipdb.set_trace()
        
        gradients = sdf_network.gradient(
                                        pts.reshape(-1, 3), # pts.squeeze(0),
                                        geometryVolume.unsqueeze(0), 
                                        lod=lod
                                        ).squeeze()
        
        surface_normals = safe_l2_normalize(gradients, dim=-1) # [npts, 3]
        # input normals
        ren_ray_diff = self.compute_angle_view_independent(
                         xyz=pts,
                         surface_normals=surface_normals,
                         supporting_c2ws=supporting_c2ws   
        )

        # # choose closest target view direction from 32 candidate views
        # # choose the closest source view as view direction instead of the normals vectors
        # pts2src_centers = safe_l2_normalize((supporting_c2ws[:, :3, 3].unsqueeze(1) - pts)) # [N_views, npts, 3]

        # cosine_distance = torch.sum(pts2src_centers * surface_normals, dim=-1, keepdim=True) # [N_views, npts, 1]
        # # choose the largest cosine distance as the view direction
        # max_idx = torch.argmax(cosine_distance, dim=0) # [npts, 1]

        # chosen_view_direction = pts2src_centers[max_idx.squeeze(), torch.arange(pts.shape[1]), :] # [npts, 3]
        # ren_ray_diff = self.compute_angle_view_independent(
        #                  xyz=pts,
        #                  surface_normals=chosen_view_direction,
        #                  supporting_c2ws=supporting_c2ws   
        # )



        # # choose closest target view direction from 8 candidate views
        # # choose the closest source view as view direction instead of the normals vectors
        # target_candidate_c2ws = torch.inverse(target_candidate_w2cs)
        # pts2src_centers = safe_l2_normalize((target_candidate_c2ws[:, :3, 3].unsqueeze(1) - pts)) # [N_views, npts, 3]

        # cosine_distance = torch.sum(pts2src_centers * surface_normals, dim=-1, keepdim=True) # [N_views, npts, 1]
        # # choose the largest cosine distance as the view direction
        # max_idx = torch.argmax(cosine_distance, dim=0) # [npts, 1]

        # chosen_view_direction = pts2src_centers[max_idx.squeeze(), torch.arange(pts.shape[1]), :] # [npts, 3]
        # ren_ray_diff = self.compute_angle_view_independent(
        #                  xyz=pts,
        #                  surface_normals=chosen_view_direction,
        #                  supporting_c2ws=supporting_c2ws   
        # )


        # ray_diff = self.compute_angle(pts, query_c2w, supporting_c2ws)  # [N_views, N_rays, n_samples, 4]
        # import ipdb; ipdb.set_trace()


        # input_directions = safe_l2_normalize(pts)
        # ren_ray_diff = self.compute_angle_view_independent(
        #                  xyz=pts,
        #                  surface_normals=input_directions,
        #                  supporting_c2ws=supporting_c2ws   
        # )

        if pts_geometry_masks is not None:
            final_mask = pts_geometry_masks[None, :, :].repeat(N_supporting_views, 1, 1) & \
                         pts_rendering_mask  # [N_views, N_rays, n_samples]
        else:
            final_mask = pts_rendering_mask
        # import ipdb; ipdb.set_trace()
        z_diff, pts_pred_depth_masks = None, None
        
        if pred_depth_maps is not None:
            pts_pred_depth_values = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_maps, supporting_w2cs,
                                                                        supporting_intrinsics, img_wh)
            pts_pred_depth_values = pts_pred_depth_values.permute(0, 2, 3,
                                                                  1).contiguous()  # (N_views, N_rays*n_samples, 1)

            # - pts_pred_depth_masks are critical than final_mask,
            # - the ray containing few invalid pts will be treated invalid
            pts_pred_depth_masks = sample_ptsFeatures_from_featureMaps(pts, supporting_depth_masks.float(),
                                                                       supporting_w2cs,
                                                                       supporting_intrinsics, img_wh)
            
            pts_pred_depth_masks = pts_pred_depth_masks.permute(0, 2, 3, 1).contiguous()[:, :, :,
                                   0]  # (N_views, N_rays*n_samples)

            z_diff = self.compute_z_diff(pts, supporting_w2cs, supporting_intrinsics, pts_pred_depth_values)
        # import ipdb; ipdb.set_trace()
        return pts_geometry_feature, rgb_feats, ren_ray_diff, final_mask, z_diff, pts_pred_depth_masks