File size: 35,702 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsparse.tensor import PointTensor, SparseTensor
import torchsparse.nn as spnn

from tsparse.modules import SparseCostRegNet
from tsparse.torchsparse_utils import sparse_to_dense_channel
from ops.grid_sampler import grid_sample_3d, tricubic_sample_3d

# from .gru_fusion import GRUFusion
from ops.back_project import back_project_sparse_type
from ops.generate_grids import generate_grid

from inplace_abn import InPlaceABN

from models.embedder import Embedding
from models.featurenet import ConvBnReLU

import pdb
import random

torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)


@torch.jit.script
def fused_mean_variance(x, weight):
    mean = torch.sum(x * weight, dim=1, keepdim=True)
    var = torch.sum(weight * (x - mean) ** 2, dim=1, keepdim=True)
    return mean, var


class LatentSDFLayer(nn.Module):
    def __init__(self,
                 d_in=3,
                 d_out=129,
                 d_hidden=128,
                 n_layers=4,
                 skip_in=(4,),
                 multires=0,
                 bias=0.5,
                 geometric_init=True,
                 weight_norm=True,
                 activation='softplus',
                 d_conditional_feature=16):
        super(LatentSDFLayer, self).__init__()

        self.d_conditional_feature = d_conditional_feature

        # concat latent code for ench layer input excepting the first layer and the last layer
        dims_in = [d_in] + [d_hidden + d_conditional_feature for _ in range(n_layers - 2)] + [d_hidden]
        dims_out = [d_hidden for _ in range(n_layers - 1)] + [d_out]

        self.embed_fn_fine = None

        if multires > 0:
            embed_fn = Embedding(in_channels=d_in, N_freqs=multires)  # * include the input
            self.embed_fn_fine = embed_fn
            dims_in[0] = embed_fn.out_channels

        self.num_layers = n_layers
        self.skip_in = skip_in

        for l in range(0, self.num_layers - 1):
            if l in self.skip_in:
                in_dim = dims_in[l] + dims_in[0]
            else:
                in_dim = dims_in[l]

            out_dim = dims_out[l]
            lin = nn.Linear(in_dim, out_dim)

            if geometric_init:  # - from IDR code,
                if l == self.num_layers - 2:
                    torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(in_dim), std=0.0001)
                    torch.nn.init.constant_(lin.bias, -bias)
                    # the channels for latent codes are set to 0
                    torch.nn.init.constant_(lin.weight[:, -d_conditional_feature:], 0.0)
                    torch.nn.init.constant_(lin.bias[-d_conditional_feature:], 0.0)

                elif multires > 0 and l == 0:  # the first layer
                    torch.nn.init.constant_(lin.bias, 0.0)
                    # * the channels for position embeddings are set to 0
                    torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
                    # * the channels for the xyz coordinate (3 channels) for initialized by normal distribution
                    torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim))
                elif multires > 0 and l in self.skip_in:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
                    # * the channels for position embeddings (and conditional_feature) are initialized to 0
                    torch.nn.init.constant_(lin.weight[:, -(dims_in[0] - 3 + d_conditional_feature):], 0.0)
                else:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
                    # the channels for latent code are initialized to 0
                    torch.nn.init.constant_(lin.weight[:, -d_conditional_feature:], 0.0)

            if weight_norm:
                lin = nn.utils.weight_norm(lin)

            setattr(self, "lin" + str(l), lin)

        if activation == 'softplus':
            self.activation = nn.Softplus(beta=100)
        else:
            assert activation == 'relu'
            self.activation = nn.ReLU()

    def forward(self, inputs, latent):
        inputs = inputs
        if self.embed_fn_fine is not None:
            inputs = self.embed_fn_fine(inputs)

        # - only for lod1 network can use the pretrained params of lod0 network
        if latent.shape[1] != self.d_conditional_feature:
            latent = torch.cat([latent, latent], dim=1)

        x = inputs
        for l in range(0, self.num_layers - 1):
            lin = getattr(self, "lin" + str(l))

            # * due to the conditional bias, different from original neus version
            if l in self.skip_in:
                x = torch.cat([x, inputs], 1) / np.sqrt(2)

            if 0 < l < self.num_layers - 1:
                x = torch.cat([x, latent], 1)

            x = lin(x)

            if l < self.num_layers - 2:
                x = self.activation(x)

        return x


class SparseSdfNetwork(nn.Module):
    '''
    Coarse-to-fine sparse cost regularization network
    return sparse volume feature for extracting sdf
    '''

    def __init__(self, lod, ch_in, voxel_size, vol_dims,
                 hidden_dim=128, activation='softplus',
                 cost_type='variance_mean',
                 d_pyramid_feature_compress=16,
                 regnet_d_out=8, num_sdf_layers=4,
                 multires=6,
                 ):
        super(SparseSdfNetwork, self).__init__()

        self.lod = lod  # - gradually training, the current regularization lod
        self.ch_in = ch_in
        self.voxel_size = voxel_size  # - the voxel size of the current volume
        self.vol_dims = torch.tensor(vol_dims)  # - the dims of the current volume

        self.selected_views_num = 2  # the number of selected views for feature aggregation
        self.hidden_dim = hidden_dim
        self.activation = activation
        self.cost_type = cost_type
        self.d_pyramid_feature_compress = d_pyramid_feature_compress
        self.gru_fusion = None

        self.regnet_d_out = regnet_d_out
        self.multires = multires

        self.pos_embedder = Embedding(3, self.multires)

        self.compress_layer = ConvBnReLU(
            self.ch_in, self.d_pyramid_feature_compress, 3, 1, 1,
            norm_act=InPlaceABN)
        sparse_ch_in = self.d_pyramid_feature_compress * 2

        sparse_ch_in = sparse_ch_in + 16 if self.lod > 0 else sparse_ch_in
        self.sparse_costreg_net = SparseCostRegNet(
            d_in=sparse_ch_in, d_out=self.regnet_d_out)
        # self.regnet_d_out = self.sparse_costreg_net.d_out

        if activation == 'softplus':
            self.activation = nn.Softplus(beta=100)
        else:
            assert activation == 'relu'
            self.activation = nn.ReLU()

        self.sdf_layer = LatentSDFLayer(d_in=3,
                                        d_out=self.hidden_dim + 1,
                                        d_hidden=self.hidden_dim,
                                        n_layers=num_sdf_layers,
                                        multires=multires,
                                        geometric_init=True,
                                        weight_norm=True,
                                        activation=activation,
                                        d_conditional_feature=16  # self.regnet_d_out
                                        )

    def upsample(self, pre_feat, pre_coords, interval, num=8):
        '''

        :param pre_feat: (Tensor), features from last level, (N, C)
        :param pre_coords: (Tensor), coordinates from last level, (N, 4) (4 : Batch ind, x, y, z)
        :param interval: interval of voxels, interval = scale ** 2
        :param num: 1 -> 8
        :return: up_feat : (Tensor), upsampled features, (N*8, C)
        :return: up_coords: (N*8, 4), upsampled coordinates, (4 : Batch ind, x, y, z)
        '''
        with torch.no_grad():
            pos_list = [1, 2, 3, [1, 2], [1, 3], [2, 3], [1, 2, 3]]
            n, c = pre_feat.shape
            up_feat = pre_feat.unsqueeze(1).expand(-1, num, -1).contiguous()
            up_coords = pre_coords.unsqueeze(1).repeat(1, num, 1).contiguous()
            for i in range(num - 1):
                up_coords[:, i + 1, pos_list[i]] += interval

            up_feat = up_feat.view(-1, c)
            up_coords = up_coords.view(-1, 4)

        return up_feat, up_coords

    def aggregate_multiview_features(self, multiview_features, multiview_masks):
        """
        aggregate mutli-view features by compute their cost variance
        :param multiview_features: (num of voxels, num_of_views, c)
        :param multiview_masks: (num of voxels, num_of_views)
        :return:
        """
        num_pts, n_views, C = multiview_features.shape

        counts = torch.sum(multiview_masks, dim=1, keepdim=False)  # [num_pts]

        assert torch.all(counts > 0)  # the point is visible for at least 1 view

        volume_sum = torch.sum(multiview_features, dim=1, keepdim=False)  # [num_pts, C]
        volume_sq_sum = torch.sum(multiview_features ** 2, dim=1, keepdim=False)

        if volume_sum.isnan().sum() > 0:
            import ipdb; ipdb.set_trace()

        del multiview_features

        counts = 1. / (counts + 1e-5)
        costvar = volume_sq_sum * counts[:, None] - (volume_sum * counts[:, None]) ** 2

        costvar_mean = torch.cat([costvar, volume_sum * counts[:, None]], dim=1)
        del volume_sum, volume_sq_sum, counts



        return costvar_mean

    def sparse_to_dense_volume(self, coords, feature, vol_dims, interval, device=None):
        """
        convert the sparse volume into dense volume to enable trilinear sampling
        to save GPU memory;
        :param coords: [num_pts, 3]
        :param feature: [num_pts, C]
        :param vol_dims: [3]  dX, dY, dZ
        :param interval:
        :return:
        """

        # * assume batch size is 1
        if device is None:
            device = feature.device

        coords_int = (coords / interval).to(torch.int64)
        vol_dims = (vol_dims / interval).to(torch.int64)

        # - if stored in CPU, too slow
        dense_volume = sparse_to_dense_channel(
            coords_int.to(device), feature.to(device), vol_dims.to(device),
            feature.shape[1], 0, device)  # [X, Y, Z, C]

        valid_mask_volume = sparse_to_dense_channel(
            coords_int.to(device),
            torch.ones([feature.shape[0], 1]).to(feature.device),
            vol_dims.to(device),
            1, 0, device)  # [X, Y, Z, 1]

        dense_volume = dense_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0)  # [1, C, X, Y, Z]
        valid_mask_volume = valid_mask_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0)  # [1, 1, X, Y, Z]

        return dense_volume, valid_mask_volume

    def get_conditional_volume(self, feature_maps, partial_vol_origin, proj_mats, sizeH=None, sizeW=None, lod=0,
                               pre_coords=None, pre_feats=None,
                               ):
        """

        :param feature_maps: pyramid features (B,V,C0+C1+C2,H,W) fused pyramid features
        :param partial_vol_origin: [B, 3]  the world coordinates of the volume origin (0,0,0)
        :param proj_mats: projection matrix transform world pts into image space [B,V,4,4] suitable for original image size
        :param sizeH: the H of original image size
        :param sizeW: the W of original image size
        :param pre_coords: the coordinates of sparse volume from the prior lod
        :param pre_feats: the features of sparse volume from the prior lod
        :return:
        """
        device = proj_mats.device
        bs = feature_maps.shape[0]
        N_views = feature_maps.shape[1]
        minimum_visible_views = np.min([1, N_views - 1])
        # import ipdb; ipdb.set_trace()
        outputs = {}
        pts_samples = []

        # ----coarse to fine----

        # * use fused pyramid feature maps are very important
        if self.compress_layer is not None:
            feats = self.compress_layer(feature_maps[0])
        else:
            feats = feature_maps[0]
        feats = feats[:, None, :, :, :]  # [V, B, C, H, W]
        KRcam = proj_mats.permute(1, 0, 2, 3).contiguous()  # [V, B, 4, 4]
        interval = 1

        if self.lod == 0:
            # ----generate new coords----
            coords = generate_grid(self.vol_dims, 1)[0]
            coords = coords.view(3, -1).to(device)  # [3, num_pts]
            up_coords = []
            for b in range(bs):
                up_coords.append(torch.cat([torch.ones(1, coords.shape[-1]).to(coords.device) * b, coords]))
            up_coords = torch.cat(up_coords, dim=1).permute(1, 0).contiguous()
            # * since we only estimate the geometry of input reference image at one time;
            # * mask the outside of the camera frustum
            # import ipdb; ipdb.set_trace()
            frustum_mask = back_project_sparse_type(
                up_coords, partial_vol_origin, self.voxel_size,
                feats, KRcam, sizeH=sizeH, sizeW=sizeW, only_mask=True)  # [num_pts, n_views]
            frustum_mask = torch.sum(frustum_mask, dim=-1) > minimum_visible_views  # ! here should be large
            up_coords = up_coords[frustum_mask]  # [num_pts_valid, 4]

        else:
            # ----upsample coords----
            assert pre_feats is not None
            assert pre_coords is not None
            up_feat, up_coords = self.upsample(pre_feats, pre_coords, 1)

        # ----back project----
        # give each valid 3d grid point all valid 2D features and masks
        multiview_features, multiview_masks = back_project_sparse_type(
            up_coords, partial_vol_origin, self.voxel_size, feats,
            KRcam, sizeH=sizeH, sizeW=sizeW)  # (num of voxels, num_of_views, c), (num of voxels, num_of_views)
                                              # num_of_views = all views
        
        # if multiview_features.isnan().sum() > 0:
        #     import ipdb; ipdb.set_trace()

        # import ipdb; ipdb.set_trace()
        if self.lod > 0:
            # ! need another invalid voxels filtering
            frustum_mask = torch.sum(multiview_masks, dim=-1) > 1
            up_feat = up_feat[frustum_mask]
            up_coords = up_coords[frustum_mask]
            multiview_features = multiview_features[frustum_mask]
            multiview_masks = multiview_masks[frustum_mask]
        # if multiview_features.isnan().sum() > 0:
        #     import ipdb; ipdb.set_trace()
        volume = self.aggregate_multiview_features(multiview_features, multiview_masks) # compute variance for all images features
        # import ipdb; ipdb.set_trace()

        # if volume.isnan().sum() > 0:
        #     import ipdb; ipdb.set_trace()

        del multiview_features, multiview_masks

        # ----concat feature from last stage----
        if self.lod != 0:
            feat = torch.cat([volume, up_feat], dim=1)
        else:
            feat = volume

        # batch index is in the last position
        r_coords = up_coords[:, [1, 2, 3, 0]]

        # if feat.isnan().sum() > 0:
        #     print('feat has nan:', feat.isnan().sum())
        #     import ipdb; ipdb.set_trace()

        sparse_feat = SparseTensor(feat, r_coords.to(
            torch.int32))  # - directly use sparse tensor to avoid point2voxel operations
        # import ipdb; ipdb.set_trace()
        feat = self.sparse_costreg_net(sparse_feat)

        dense_volume, valid_mask_volume = self.sparse_to_dense_volume(up_coords[:, 1:], feat, self.vol_dims, interval,
                                                                      device=None)  # [1, C/1, X, Y, Z]

        # if dense_volume.isnan().sum() > 0:
        #     import ipdb; ipdb.set_trace()


        outputs['dense_volume_scale%d' % self.lod] = dense_volume # [1, 16, 96, 96, 96]
        outputs['valid_mask_volume_scale%d' % self.lod] = valid_mask_volume # [1, 1, 96, 96, 96]
        outputs['visible_mask_scale%d' % self.lod] = valid_mask_volume # [1, 1, 96, 96, 96]
        outputs['coords_scale%d' % self.lod] = generate_grid(self.vol_dims, interval).to(device)
        # import ipdb; ipdb.set_trace()
        return outputs

    def sdf(self, pts, conditional_volume, lod):
        num_pts = pts.shape[0]
        device = pts.device
        pts_ = pts.clone()
        pts = pts.view(1, 1, 1, num_pts, 3)  # - should be in range (-1, 1)

        pts = torch.flip(pts, dims=[-1])
        # import ipdb; ipdb.set_trace()
        sampled_feature = grid_sample_3d(conditional_volume, pts)  # [1, c, 1, 1, num_pts]
        sampled_feature = sampled_feature.view(-1, num_pts).permute(1, 0).contiguous().to(device)

        sdf_pts = self.sdf_layer(pts_, sampled_feature)

        outputs = {}
        outputs['sdf_pts_scale%d' % lod] = sdf_pts[:, :1]
        outputs['sdf_features_pts_scale%d' % lod] = sdf_pts[:, 1:]
        outputs['sampled_latent_scale%d' % lod] = sampled_feature

        return outputs

    @torch.no_grad()
    def sdf_from_sdfvolume(self, pts, sdf_volume, lod=0):
        num_pts = pts.shape[0]
        device = pts.device
        pts_ = pts.clone()
        pts = pts.view(1, 1, 1, num_pts, 3)  # - should be in range (-1, 1)

        pts = torch.flip(pts, dims=[-1])

        sdf = torch.nn.functional.grid_sample(sdf_volume, pts, mode='bilinear', align_corners=True,
                                              padding_mode='border')
        sdf = sdf.view(-1, num_pts).permute(1, 0).contiguous().to(device)

        outputs = {}
        outputs['sdf_pts_scale%d' % lod] = sdf

        return outputs

    @torch.no_grad()
    def get_sdf_volume(self, conditional_volume, mask_volume, coords_volume, partial_origin):
        """

        :param conditional_volume: [1,C, dX,dY,dZ]
        :param mask_volume: [1,1, dX,dY,dZ]
        :param coords_volume: [1,3, dX,dY,dZ]
        :return:
        """
        device = conditional_volume.device
        chunk_size = 10240

        _, C, dX, dY, dZ = conditional_volume.shape
        conditional_volume = conditional_volume.view(C, dX * dY * dZ).permute(1, 0).contiguous()
        mask_volume = mask_volume.view(-1)
        coords_volume = coords_volume.view(3, dX * dY * dZ).permute(1, 0).contiguous()

        pts = coords_volume * self.voxel_size + partial_origin  # [dX*dY*dZ, 3]

        sdf_volume = torch.ones([dX * dY * dZ, 1]).float().to(device)

        conditional_volume = conditional_volume[mask_volume > 0]
        pts = pts[mask_volume > 0]
        conditional_volume = conditional_volume.split(chunk_size)
        pts = pts.split(chunk_size)

        sdf_all = []
        for pts_part, feature_part in zip(pts, conditional_volume):
            sdf_part = self.sdf_layer(pts_part, feature_part)[:, :1]
            sdf_all.append(sdf_part)

        sdf_all = torch.cat(sdf_all, dim=0)
        sdf_volume[mask_volume > 0] = sdf_all
        sdf_volume = sdf_volume.view(1, 1, dX, dY, dZ)
        return sdf_volume

    def gradient(self, x, conditional_volume, lod):
        """
        return the gradient of specific lod
        :param x:
        :param lod:
        :return:
        """
        x.requires_grad_(True)
        # import ipdb; ipdb.set_trace()
        with torch.enable_grad():
            output = self.sdf(x, conditional_volume, lod)
        y = output['sdf_pts_scale%d' % lod]

        d_output = torch.ones_like(y, requires_grad=False, device=y.device)
        # ! Distributed Data Parallel doesn’t work with torch.autograd.grad()
        # ! (i.e. it will only work if gradients are to be accumulated in .grad attributes of parameters).
        gradients = torch.autograd.grad(
            outputs=y,
            inputs=x,
            grad_outputs=d_output,
            create_graph=True,
            retain_graph=True,
            only_inputs=True)[0]
        return gradients.unsqueeze(1)


def sparse_to_dense_volume(coords, feature, vol_dims, interval, device=None):
    """
    convert the sparse volume into dense volume to enable trilinear sampling
    to save GPU memory;
    :param coords: [num_pts, 3]
    :param feature: [num_pts, C]
    :param vol_dims: [3]  dX, dY, dZ
    :param interval:
    :return:
    """

    # * assume batch size is 1
    if device is None:
        device = feature.device

    coords_int = (coords / interval).to(torch.int64)
    vol_dims = (vol_dims / interval).to(torch.int64)

    # - if stored in CPU, too slow
    dense_volume = sparse_to_dense_channel(
        coords_int.to(device), feature.to(device), vol_dims.to(device),
        feature.shape[1], 0, device)  # [X, Y, Z, C]

    valid_mask_volume = sparse_to_dense_channel(
        coords_int.to(device),
        torch.ones([feature.shape[0], 1]).to(feature.device),
        vol_dims.to(device),
        1, 0, device)  # [X, Y, Z, 1]

    dense_volume = dense_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0)  # [1, C, X, Y, Z]
    valid_mask_volume = valid_mask_volume.permute(3, 0, 1, 2).contiguous().unsqueeze(0)  # [1, 1, X, Y, Z]

    return dense_volume, valid_mask_volume


class SdfVolume(nn.Module):
    def __init__(self, volume, coords=None, type='dense'):
        super(SdfVolume, self).__init__()
        self.volume = torch.nn.Parameter(volume, requires_grad=True)
        self.coords = coords
        self.type = type

    def forward(self):
        return self.volume


class FinetuneOctreeSdfNetwork(nn.Module):
    '''
    After obtain the conditional volume from generalized network;
    directly optimize the conditional volume
    The conditional volume is still sparse
    '''

    def __init__(self, voxel_size, vol_dims,
                 origin=[-1., -1., -1.],
                 hidden_dim=128, activation='softplus',
                 regnet_d_out=8,
                 multires=6,
                 if_fitted_rendering=True,
                 num_sdf_layers=4,
                 ):
        super(FinetuneOctreeSdfNetwork, self).__init__()

        self.voxel_size = voxel_size  # - the voxel size of the current volume
        self.vol_dims = torch.tensor(vol_dims)  # - the dims of the current volume

        self.origin = torch.tensor(origin).to(torch.float32)

        self.hidden_dim = hidden_dim
        self.activation = activation

        self.regnet_d_out = regnet_d_out

        self.if_fitted_rendering = if_fitted_rendering
        self.multires = multires
        # d_in_embedding = self.regnet_d_out if self.pos_add_type == 'latent' else 3
        # self.pos_embedder = Embedding(d_in_embedding, self.multires)

        # - the optimized parameters
        self.sparse_volume_lod0 = None
        self.sparse_coords_lod0 = None

        if activation == 'softplus':
            self.activation = nn.Softplus(beta=100)
        else:
            assert activation == 'relu'
            self.activation = nn.ReLU()

        self.sdf_layer = LatentSDFLayer(d_in=3,
                                        d_out=self.hidden_dim + 1,
                                        d_hidden=self.hidden_dim,
                                        n_layers=num_sdf_layers,
                                        multires=multires,
                                        geometric_init=True,
                                        weight_norm=True,
                                        activation=activation,
                                        d_conditional_feature=16  # self.regnet_d_out
                                        )

        # - add mlp rendering when finetuning
        self.renderer = None

        d_in_renderer = 3 + self.regnet_d_out + 3 + 3
        self.renderer = BlendingRenderingNetwork(
            d_feature=self.hidden_dim - 1,
            mode='idr',  # ! the view direction influence a lot
            d_in=d_in_renderer,
            d_out=50,  # maximum 50 images
            d_hidden=self.hidden_dim,
            n_layers=3,
            weight_norm=True,
            multires_view=4,
            squeeze_out=True,
        )

    def initialize_conditional_volumes(self, dense_volume_lod0, dense_volume_mask_lod0,
                                       sparse_volume_lod0=None, sparse_coords_lod0=None):
        """

        :param dense_volume_lod0: [1,C,dX,dY,dZ]
        :param dense_volume_mask_lod0: [1,1,dX,dY,dZ]
        :param dense_volume_lod1:
        :param dense_volume_mask_lod1:
        :return:
        """

        if sparse_volume_lod0 is None:
            device = dense_volume_lod0.device
            _, C, dX, dY, dZ = dense_volume_lod0.shape

            dense_volume_lod0 = dense_volume_lod0.view(C, dX * dY * dZ).permute(1, 0).contiguous()
            mask_lod0 = dense_volume_mask_lod0.view(dX * dY * dZ) > 0

            self.sparse_volume_lod0 = SdfVolume(dense_volume_lod0[mask_lod0], type='sparse')

            coords = generate_grid(self.vol_dims, 1)[0]  # [3, dX, dY, dZ]
            coords = coords.view(3, dX * dY * dZ).permute(1, 0).to(device)
            self.sparse_coords_lod0 = torch.nn.Parameter(coords[mask_lod0], requires_grad=False)
        else:
            self.sparse_volume_lod0 = SdfVolume(sparse_volume_lod0, type='sparse')
            self.sparse_coords_lod0 = torch.nn.Parameter(sparse_coords_lod0, requires_grad=False)

    def get_conditional_volume(self):
        dense_volume, valid_mask_volume = sparse_to_dense_volume(
            self.sparse_coords_lod0,
            self.sparse_volume_lod0(), self.vol_dims, interval=1,
            device=None)  # [1, C/1, X, Y, Z]

        # valid_mask_volume = self.dense_volume_mask_lod0

        outputs = {}
        outputs['dense_volume_scale%d' % 0] = dense_volume
        outputs['valid_mask_volume_scale%d' % 0] = valid_mask_volume

        return outputs

    def tv_regularizer(self):
        dense_volume, valid_mask_volume = sparse_to_dense_volume(
            self.sparse_coords_lod0,
            self.sparse_volume_lod0(), self.vol_dims, interval=1,
            device=None)  # [1, C/1, X, Y, Z]

        dx = (dense_volume[:, :, 1:, :, :] - dense_volume[:, :, :-1, :, :]) ** 2  # [1, C/1, X-1, Y, Z]
        dy = (dense_volume[:, :, :, 1:, :] - dense_volume[:, :, :, :-1, :]) ** 2  # [1, C/1, X, Y-1, Z]
        dz = (dense_volume[:, :, :, :, 1:] - dense_volume[:, :, :, :, :-1]) ** 2  # [1, C/1, X, Y, Z-1]

        tv = dx[:, :, :, :-1, :-1] + dy[:, :, :-1, :, :-1] + dz[:, :, :-1, :-1, :]  # [1, C/1, X-1, Y-1, Z-1]

        mask = valid_mask_volume[:, :, :-1, :-1, :-1] * valid_mask_volume[:, :, 1:, :-1, :-1] * \
               valid_mask_volume[:, :, :-1, 1:, :-1] * valid_mask_volume[:, :, :-1, :-1, 1:]

        tv = torch.sqrt(tv + 1e-6).mean(dim=1, keepdim=True) * mask
        # tv = tv.mean(dim=1, keepdim=True) * mask

        assert torch.all(~torch.isnan(tv))

        return torch.mean(tv)

    def sdf(self, pts, conditional_volume, lod):

        outputs = {}

        num_pts = pts.shape[0]
        device = pts.device
        pts_ = pts.clone()
        pts = pts.view(1, 1, 1, num_pts, 3)  # - should be in range (-1, 1)

        pts = torch.flip(pts, dims=[-1])

        sampled_feature = grid_sample_3d(conditional_volume, pts)  # [1, c, 1, 1, num_pts]
        sampled_feature = sampled_feature.view(-1, num_pts).permute(1, 0).contiguous()
        outputs['sampled_latent_scale%d' % lod] = sampled_feature

        sdf_pts = self.sdf_layer(pts_, sampled_feature)

        lod = 0
        outputs['sdf_pts_scale%d' % lod] = sdf_pts[:, :1]
        outputs['sdf_features_pts_scale%d' % lod] = sdf_pts[:, 1:]

        return outputs

    def color_blend(self, pts, position, normals, view_dirs, feature_vectors, img_index,
                    pts_pixel_color, pts_pixel_mask, pts_patch_color=None, pts_patch_mask=None):

        return self.renderer(torch.cat([pts, position], dim=-1), normals, view_dirs, feature_vectors,
                             img_index, pts_pixel_color, pts_pixel_mask,
                             pts_patch_color=pts_patch_color, pts_patch_mask=pts_patch_mask)

    def gradient(self, x, conditional_volume, lod):
        """
        return the gradient of specific lod
        :param x:
        :param lod:
        :return:
        """
        x.requires_grad_(True)
        output = self.sdf(x, conditional_volume, lod)
        y = output['sdf_pts_scale%d' % 0]

        d_output = torch.ones_like(y, requires_grad=False, device=y.device)

        gradients = torch.autograd.grad(
            outputs=y,
            inputs=x,
            grad_outputs=d_output,
            create_graph=True,
            retain_graph=True,
            only_inputs=True)[0]
        return gradients.unsqueeze(1)

    @torch.no_grad()
    def prune_dense_mask(self, threshold=0.02):
        """
        Just gradually prune the mask of dense volume to decrease the number of sdf network inference
        :return:
        """
        chunk_size = 10240
        coords = generate_grid(self.vol_dims_lod0, 1)[0]  # [3, dX, dY, dZ]

        _, dX, dY, dZ = coords.shape

        pts = coords.view(3, -1).permute(1,
                                         0).contiguous() * self.voxel_size_lod0 + self.origin[None, :]  # [dX*dY*dZ, 3]

        # dense_volume = self.dense_volume_lod0()  # [1,C,dX,dY,dZ]
        dense_volume, _ = sparse_to_dense_volume(
            self.sparse_coords_lod0,
            self.sparse_volume_lod0(), self.vol_dims_lod0, interval=1,
            device=None)  # [1, C/1, X, Y, Z]

        sdf_volume = torch.ones([dX * dY * dZ, 1]).float().to(dense_volume.device) * 100

        mask = self.dense_volume_mask_lod0.view(-1) > 0

        pts_valid = pts[mask].to(dense_volume.device)
        feature_valid = dense_volume.view(self.regnet_d_out, -1).permute(1, 0).contiguous()[mask]

        pts_valid = pts_valid.split(chunk_size)
        feature_valid = feature_valid.split(chunk_size)

        sdf_list = []

        for pts_part, feature_part in zip(pts_valid, feature_valid):
            sdf_part = self.sdf_layer(pts_part, feature_part)[:, :1]
            sdf_list.append(sdf_part)

        sdf_list = torch.cat(sdf_list, dim=0)

        sdf_volume[mask] = sdf_list

        occupancy_mask = torch.abs(sdf_volume) < threshold  # [num_pts, 1]

        # - dilate
        occupancy_mask = occupancy_mask.float()
        occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
        occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
        occupancy_mask = occupancy_mask > 0

        self.dense_volume_mask_lod0 = torch.logical_and(self.dense_volume_mask_lod0,
                                                        occupancy_mask).float()  # (1, 1, dX, dY, dZ)


class BlendingRenderingNetwork(nn.Module):
    def __init__(
            self,
            d_feature,
            mode,
            d_in,
            d_out,
            d_hidden,
            n_layers,
            weight_norm=True,
            multires_view=0,
            squeeze_out=True,
    ):
        super(BlendingRenderingNetwork, self).__init__()

        self.mode = mode
        self.squeeze_out = squeeze_out
        dims = [d_in + d_feature] + [d_hidden for _ in range(n_layers)] + [d_out]

        self.embedder = None
        if multires_view > 0:
            self.embedder = Embedding(3, multires_view)
            dims[0] += (self.embedder.out_channels - 3)

        self.num_layers = len(dims)

        for l in range(0, self.num_layers - 1):
            out_dim = dims[l + 1]
            lin = nn.Linear(dims[l], out_dim)

            if weight_norm:
                lin = nn.utils.weight_norm(lin)

            setattr(self, "lin" + str(l), lin)

        self.relu = nn.ReLU()

        self.color_volume = None

        self.softmax = nn.Softmax(dim=1)

        self.type = 'blending'

    def sample_pts_from_colorVolume(self, pts):
        device = pts.device
        num_pts = pts.shape[0]
        pts_ = pts.clone()
        pts = pts.view(1, 1, 1, num_pts, 3)  # - should be in range (-1, 1)

        pts = torch.flip(pts, dims=[-1])

        sampled_color = grid_sample_3d(self.color_volume, pts)  # [1, c, 1, 1, num_pts]
        sampled_color = sampled_color.view(-1, num_pts).permute(1, 0).contiguous().to(device)

        return sampled_color

    def forward(self, position, normals, view_dirs, feature_vectors, img_index,
                pts_pixel_color, pts_pixel_mask, pts_patch_color=None, pts_patch_mask=None):
        """

        :param position: can be 3d coord or interpolated volume latent
        :param normals:
        :param view_dirs:
        :param feature_vectors:
        :param img_index: [N_views], used to extract corresponding weights
        :param pts_pixel_color: [N_pts, N_views, 3]
        :param pts_pixel_mask: [N_pts, N_views]
        :param pts_patch_color: [N_pts, N_views, Npx, 3]
        :return:
        """
        if self.embedder is not None:
            view_dirs = self.embedder(view_dirs)

        rendering_input = None

        if self.mode == 'idr':
            rendering_input = torch.cat([position, view_dirs, normals, feature_vectors], dim=-1)
        elif self.mode == 'no_view_dir':
            rendering_input = torch.cat([position, normals, feature_vectors], dim=-1)
        elif self.mode == 'no_normal':
            rendering_input = torch.cat([position, view_dirs, feature_vectors], dim=-1)
        elif self.mode == 'no_points':
            rendering_input = torch.cat([view_dirs, normals, feature_vectors], dim=-1)
        elif self.mode == 'no_points_no_view_dir':
            rendering_input = torch.cat([normals, feature_vectors], dim=-1)

        x = rendering_input

        for l in range(0, self.num_layers - 1):
            lin = getattr(self, "lin" + str(l))

            x = lin(x)

            if l < self.num_layers - 2:
                x = self.relu(x)  # [n_pts, d_out]

        ## extract value based on img_index
        x_extracted = torch.index_select(x, 1, img_index.long())

        weights_pixel = self.softmax(x_extracted)  # [n_pts, N_views]
        weights_pixel = weights_pixel * pts_pixel_mask
        weights_pixel = weights_pixel / (
                torch.sum(weights_pixel.float(), dim=1, keepdim=True) + 1e-8)  # [n_pts, N_views]
        final_pixel_color = torch.sum(pts_pixel_color * weights_pixel[:, :, None], dim=1,
                                      keepdim=False)  # [N_pts, 3]

        final_pixel_mask = torch.sum(pts_pixel_mask.float(), dim=1, keepdim=True) > 0  # [N_pts, 1]

        final_patch_color, final_patch_mask = None, None
        # pts_patch_color  [N_pts, N_views, Npx, 3]; pts_patch_mask  [N_pts, N_views, Npx]
        if pts_patch_color is not None:
            N_pts, N_views, Npx, _ = pts_patch_color.shape
            patch_mask = torch.sum(pts_patch_mask, dim=-1, keepdim=False) > Npx - 1  # [N_pts, N_views]

            weights_patch = self.softmax(x_extracted)  # [N_pts, N_views]
            weights_patch = weights_patch * patch_mask
            weights_patch = weights_patch / (
                    torch.sum(weights_patch.float(), dim=1, keepdim=True) + 1e-8)  # [n_pts, N_views]

            final_patch_color = torch.sum(pts_patch_color * weights_patch[:, :, None, None], dim=1,
                                          keepdim=False)  # [N_pts, Npx, 3]
            final_patch_mask = torch.sum(patch_mask, dim=1, keepdim=True) > 0  # [N_pts, 1]  at least one image sees

        return final_pixel_color, final_pixel_mask, final_patch_color, final_patch_mask