File size: 44,709 Bytes
854f0d0 216282e 854f0d0 216282e 854f0d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 |
"""
The codes are heavily borrowed from NeuS
"""
import os
import cv2 as cv
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
import mcubes
from icecream import ic
from models.render_utils import sample_pdf
from models.projector import Projector
from tsparse.torchsparse_utils import sparse_to_dense_channel
from models.fast_renderer import FastRenderer
from models.patch_projector import PatchProjector
class SparseNeuSRenderer(nn.Module):
"""
conditional neus render;
optimize on normalized world space;
warped by nn.Module to support DataParallel traning
"""
def __init__(self,
rendering_network_outside,
sdf_network,
variance_network,
rendering_network,
n_samples,
n_importance,
n_outside,
perturb,
alpha_type='div',
conf=None
):
super(SparseNeuSRenderer, self).__init__()
self.conf = conf
self.base_exp_dir = conf['general.base_exp_dir']
# network setups
self.rendering_network_outside = rendering_network_outside
self.sdf_network = sdf_network
self.variance_network = variance_network
self.rendering_network = rendering_network
self.n_samples = n_samples
self.n_importance = n_importance
self.n_outside = n_outside
self.perturb = perturb
self.alpha_type = alpha_type
self.rendering_projector = Projector() # used to obtain features for generalized rendering
self.h_patch_size = self.conf.get_int('model.h_patch_size', default=3)
self.patch_projector = PatchProjector(self.h_patch_size)
self.ray_tracer = FastRenderer() # ray_tracer to extract depth maps from sdf_volume
# - fitted rendering or general rendering
try:
self.if_fitted_rendering = self.sdf_network.if_fitted_rendering
except:
self.if_fitted_rendering = False
def up_sample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_variance,
conditional_valid_mask_volume=None):
device = rays_o.device
batch_size, n_samples = z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] # n_rays, n_samples, 3
if conditional_valid_mask_volume is not None:
pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume)
pts_mask = pts_mask.reshape(batch_size, n_samples)
pts_mask = pts_mask[:, :-1] * pts_mask[:, 1:] # [batch_size, n_samples-1]
else:
pts_mask = torch.ones([batch_size, n_samples]).to(pts.device)
sdf = sdf.reshape(batch_size, n_samples)
prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:]
mid_sdf = (prev_sdf + next_sdf) * 0.5
dot_val = None
if self.alpha_type == 'uniform':
dot_val = torch.ones([batch_size, n_samples - 1]) * -1.0
else:
dot_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5)
prev_dot_val = torch.cat([torch.zeros([batch_size, 1]).to(device), dot_val[:, :-1]], dim=-1)
dot_val = torch.stack([prev_dot_val, dot_val], dim=-1)
dot_val, _ = torch.min(dot_val, dim=-1, keepdim=False)
dot_val = dot_val.clip(-10.0, 0.0) * pts_mask
dist = (next_z_vals - prev_z_vals)
prev_esti_sdf = mid_sdf - dot_val * dist * 0.5
next_esti_sdf = mid_sdf + dot_val * dist * 0.5
prev_cdf = torch.sigmoid(prev_esti_sdf * inv_variance)
next_cdf = torch.sigmoid(next_esti_sdf * inv_variance)
alpha_sdf = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
alpha = alpha_sdf
# - apply pts_mask
alpha = pts_mask * alpha
weights = alpha * torch.cumprod(
torch.cat([torch.ones([batch_size, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:, :-1]
z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach()
return z_samples
def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, lod,
sdf_network, gru_fusion,
# * related to conditional feature
conditional_volume=None,
conditional_valid_mask_volume=None
):
device = rays_o.device
batch_size, n_samples = z_vals.shape
_, n_importance = new_z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None]
if conditional_valid_mask_volume is not None:
pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), conditional_valid_mask_volume)
pts_mask = pts_mask.reshape(batch_size, n_importance)
pts_mask_bool = (pts_mask > 0).view(-1)
else:
pts_mask = torch.ones([batch_size, n_importance]).to(pts.device)
new_sdf = torch.ones([batch_size * n_importance, 1]).to(pts.dtype).to(device) * 100
if torch.sum(pts_mask) > 1:
new_outputs = sdf_network.sdf(pts.reshape(-1, 3)[pts_mask_bool], conditional_volume, lod=lod)
new_sdf[pts_mask_bool] = new_outputs['sdf_pts_scale%d' % lod] # .reshape(batch_size, n_importance)
new_sdf = new_sdf.view(batch_size, n_importance)
z_vals = torch.cat([z_vals, new_z_vals], dim=-1)
sdf = torch.cat([sdf, new_sdf], dim=-1)
z_vals, index = torch.sort(z_vals, dim=-1)
xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1)
index = index.reshape(-1)
sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance)
return z_vals, sdf
@torch.no_grad()
def get_pts_mask_for_conditional_volume(self, pts, mask_volume):
"""
:param pts: [N, 3]
:param mask_volume: [1, 1, X, Y, Z]
:return:
"""
num_pts = pts.shape[0]
pts = pts.view(1, 1, 1, num_pts, 3) # - should be in range (-1, 1)
pts = torch.flip(pts, dims=[-1])
pts_mask = F.grid_sample(mask_volume, pts, mode='nearest') # [1, c, 1, 1, num_pts]
pts_mask = pts_mask.view(-1, num_pts).permute(1, 0).contiguous() # [num_pts, 1]
return pts_mask
def render_core(self,
rays_o,
rays_d,
z_vals,
sample_dist,
lod,
sdf_network,
rendering_network,
background_alpha=None, # - no use here
background_sampled_color=None, # - no use here
background_rgb=None, # - no use here
alpha_inter_ratio=0.0,
# * related to conditional feature
conditional_volume=None,
conditional_valid_mask_volume=None,
# * 2d feature maps
feature_maps=None,
color_maps=None,
w2cs=None,
intrinsics=None,
img_wh=None,
query_c2w=None, # - used for testing
if_general_rendering=True,
if_render_with_grad=True,
# * used for blending mlp rendering network
img_index=None,
rays_uv=None,
# * used for clear bg and fg
bg_num=0
):
device = rays_o.device
N_rays = rays_o.shape[0]
_, n_samples = z_vals.shape
dists = z_vals[..., 1:] - z_vals[..., :-1]
dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape).to(device)], -1)
mid_z_vals = z_vals + dists * 0.5
mid_dists = mid_z_vals[..., 1:] - mid_z_vals[..., :-1]
pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None] # n_rays, n_samples, 3
dirs = rays_d[:, None, :].expand(pts.shape)
pts = pts.reshape(-1, 3)
dirs = dirs.reshape(-1, 3)
# * if conditional_volume is restored from sparse volume, need mask for pts
if conditional_valid_mask_volume is not None:
pts_mask = self.get_pts_mask_for_conditional_volume(pts, conditional_valid_mask_volume)
pts_mask = pts_mask.reshape(N_rays, n_samples).float().detach()
pts_mask_bool = (pts_mask > 0).view(-1)
if torch.sum(pts_mask_bool.float()) < 1: # ! when render out image, may meet this problem
pts_mask_bool[:100] = True
else:
pts_mask = torch.ones([N_rays, n_samples]).to(pts.device)
# import ipdb; ipdb.set_trace()
# pts_valid = pts[pts_mask_bool]
sdf_nn_output = sdf_network.sdf(pts[pts_mask_bool], conditional_volume, lod=lod)
sdf = torch.ones([N_rays * n_samples, 1]).to(pts.dtype).to(device) * 100
sdf[pts_mask_bool] = sdf_nn_output['sdf_pts_scale%d' % lod] # [N_rays*n_samples, 1]
feature_vector_valid = sdf_nn_output['sdf_features_pts_scale%d' % lod]
feature_vector = torch.zeros([N_rays * n_samples, feature_vector_valid.shape[1]]).to(pts.dtype).to(device)
feature_vector[pts_mask_bool] = feature_vector_valid
# * estimate alpha from sdf
gradients = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device)
# import ipdb; ipdb.set_trace()
gradients[pts_mask_bool] = sdf_network.gradient(
pts[pts_mask_bool], conditional_volume, lod=lod).squeeze()
sampled_color_mlp = None
rendering_valid_mask_mlp = None
sampled_color_patch = None
rendering_patch_mask = None
if self.if_fitted_rendering: # used for fine-tuning
position_latent = sdf_nn_output['sampled_latent_scale%d' % lod]
sampled_color_mlp = torch.zeros([N_rays * n_samples, 3]).to(pts.dtype).to(device)
sampled_color_mlp_mask = torch.zeros([N_rays * n_samples, 1]).to(pts.dtype).to(device)
# - extract pixel
pts_pixel_color, pts_pixel_mask = self.patch_projector.pixel_warp(
pts[pts_mask_bool][:, None, :], color_maps, intrinsics,
w2cs, img_wh=None) # [N_rays * n_samples,1, N_views, 3] , [N_rays*n_samples, 1, N_views]
pts_pixel_color = pts_pixel_color[:, 0, :, :] # [N_rays * n_samples, N_views, 3]
pts_pixel_mask = pts_pixel_mask[:, 0, :] # [N_rays*n_samples, N_views]
# - extract patch
if_patch_blending = False if rays_uv is None else True
pts_patch_color, pts_patch_mask = None, None
if if_patch_blending:
pts_patch_color, pts_patch_mask = self.patch_projector.patch_warp(
pts.reshape([N_rays, n_samples, 3]),
rays_uv, gradients.reshape([N_rays, n_samples, 3]),
color_maps,
intrinsics[0], intrinsics,
query_c2w[0], torch.inverse(w2cs), img_wh=None
) # (N_rays, n_samples, N_src, Npx, 3), (N_rays, n_samples, N_src, Npx)
N_src, Npx = pts_patch_mask.shape[2:]
pts_patch_color = pts_patch_color.view(N_rays * n_samples, N_src, Npx, 3)[pts_mask_bool]
pts_patch_mask = pts_patch_mask.view(N_rays * n_samples, N_src, Npx)[pts_mask_bool]
sampled_color_patch = torch.zeros([N_rays * n_samples, Npx, 3]).to(device)
sampled_color_patch_mask = torch.zeros([N_rays * n_samples, 1]).to(device)
sampled_color_mlp_, sampled_color_mlp_mask_, \
sampled_color_patch_, sampled_color_patch_mask_ = sdf_network.color_blend(
pts[pts_mask_bool],
position_latent,
gradients[pts_mask_bool],
dirs[pts_mask_bool],
feature_vector[pts_mask_bool],
img_index=img_index,
pts_pixel_color=pts_pixel_color,
pts_pixel_mask=pts_pixel_mask,
pts_patch_color=pts_patch_color,
pts_patch_mask=pts_patch_mask
) # [n, 3], [n, 1]
sampled_color_mlp[pts_mask_bool] = sampled_color_mlp_
sampled_color_mlp_mask[pts_mask_bool] = sampled_color_mlp_mask_.float()
sampled_color_mlp = sampled_color_mlp.view(N_rays, n_samples, 3)
sampled_color_mlp_mask = sampled_color_mlp_mask.view(N_rays, n_samples)
rendering_valid_mask_mlp = torch.mean(pts_mask * sampled_color_mlp_mask, dim=-1, keepdim=True) > 0.5
# patch blending
if if_patch_blending:
sampled_color_patch[pts_mask_bool] = sampled_color_patch_
sampled_color_patch_mask[pts_mask_bool] = sampled_color_patch_mask_.float()
sampled_color_patch = sampled_color_patch.view(N_rays, n_samples, Npx, 3)
sampled_color_patch_mask = sampled_color_patch_mask.view(N_rays, n_samples)
rendering_patch_mask = torch.mean(pts_mask * sampled_color_patch_mask, dim=-1,
keepdim=True) > 0.5 # [N_rays, 1]
else:
sampled_color_patch, rendering_patch_mask = None, None
if if_general_rendering: # used for general training
# [512, 128, 16]; [4, 512, 128, 59]; [4, 512, 128, 4]
ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask, _, _ = self.rendering_projector.compute(
pts.view(N_rays, n_samples, 3),
# * 3d geometry feature volumes
geometryVolume=conditional_volume[0],
geometryVolumeMask=conditional_valid_mask_volume[0],
# * 2d rendering feature maps
rendering_feature_maps=feature_maps, # [n_views, 56, 256, 256]
color_maps=color_maps,
w2cs=w2cs,
intrinsics=intrinsics,
img_wh=img_wh,
query_img_idx=0, # the index of the N_views dim for rendering
query_c2w=query_c2w,
)
# (N_rays, n_samples, 3)
if if_render_with_grad:
# import ipdb; ipdb.set_trace()
# [nrays, 3] [nrays, 1]
sampled_color, rendering_valid_mask = rendering_network(
ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask)
# import ipdb; ipdb.set_trace()
else:
with torch.no_grad():
sampled_color, rendering_valid_mask = rendering_network(
ren_geo_feats, ren_rgb_feats, ren_ray_diff, ren_mask)
else:
sampled_color, rendering_valid_mask = None, None
inv_variance = self.variance_network(feature_vector)[:, :1].clip(1e-6, 1e6)
true_dot_val = (dirs * gradients).sum(-1, keepdim=True) # * calculate
iter_cos = -(F.relu(-true_dot_val * 0.5 + 0.5) * (1.0 - alpha_inter_ratio) + F.relu(
-true_dot_val) * alpha_inter_ratio) # always non-positive
iter_cos = iter_cos * pts_mask.view(-1, 1)
true_estimate_sdf_half_next = sdf + iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5
true_estimate_sdf_half_prev = sdf - iter_cos.clip(-10.0, 10.0) * dists.reshape(-1, 1) * 0.5
prev_cdf = torch.sigmoid(true_estimate_sdf_half_prev * inv_variance)
next_cdf = torch.sigmoid(true_estimate_sdf_half_next * inv_variance)
p = prev_cdf - next_cdf
c = prev_cdf
if self.alpha_type == 'div':
alpha_sdf = ((p + 1e-5) / (c + 1e-5)).reshape(N_rays, n_samples).clip(0.0, 1.0)
elif self.alpha_type == 'uniform':
uniform_estimate_sdf_half_next = sdf - dists.reshape(-1, 1) * 0.5
uniform_estimate_sdf_half_prev = sdf + dists.reshape(-1, 1) * 0.5
uniform_prev_cdf = torch.sigmoid(uniform_estimate_sdf_half_prev * inv_variance)
uniform_next_cdf = torch.sigmoid(uniform_estimate_sdf_half_next * inv_variance)
uniform_alpha = F.relu(
(uniform_prev_cdf - uniform_next_cdf + 1e-5) / (uniform_prev_cdf + 1e-5)).reshape(
N_rays, n_samples).clip(0.0, 1.0)
alpha_sdf = uniform_alpha
else:
assert False
alpha = alpha_sdf
# - apply pts_mask
alpha = alpha * pts_mask
# pts_radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).reshape(N_rays, n_samples)
# inside_sphere = (pts_radius < 1.0).float().detach()
# relax_inside_sphere = (pts_radius < 1.2).float().detach()
inside_sphere = pts_mask
relax_inside_sphere = pts_mask
weights = alpha * torch.cumprod(torch.cat([torch.ones([N_rays, 1]).to(device), 1. - alpha + 1e-7], -1), -1)[:,
:-1] # n_rays, n_samples
weights_sum = weights.sum(dim=-1, keepdim=True)
alpha_sum = alpha.sum(dim=-1, keepdim=True)
if bg_num > 0:
weights_sum_fg = weights[:, :-bg_num].sum(dim=-1, keepdim=True)
else:
weights_sum_fg = weights_sum
if sampled_color is not None:
color = (sampled_color * weights[:, :, None]).sum(dim=1)
else:
color = None
# import ipdb; ipdb.set_trace()
if background_rgb is not None and color is not None:
color = color + background_rgb * (1.0 - weights_sum)
# print("color device:" + str(color.device))
# if color is not None:
# # import ipdb; ipdb.set_trace()
# color = color + (1.0 - weights_sum)
###################* mlp color rendering #####################
color_mlp = None
# import ipdb; ipdb.set_trace()
if sampled_color_mlp is not None:
color_mlp = (sampled_color_mlp * weights[:, :, None]).sum(dim=1)
if background_rgb is not None and color_mlp is not None:
color_mlp = color_mlp + background_rgb * (1.0 - weights_sum)
############################ * patch blending ################
blended_color_patch = None
if sampled_color_patch is not None:
blended_color_patch = (sampled_color_patch * weights[:, :, None, None]).sum(dim=1) # [N_rays, Npx, 3]
######################################################
gradient_error = (torch.linalg.norm(gradients.reshape(N_rays, n_samples, 3), ord=2,
dim=-1) - 1.0) ** 2
# ! the gradient normal should be masked out, the pts out of the bounding box should also be penalized
gradient_error = (pts_mask * gradient_error).sum() / (
(pts_mask).sum() + 1e-5)
depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True)
# print("[TEST]: weights_sum in render_core", weights_sum.mean())
# print("[TEST]: weights_sum in render_core NAN number", weights_sum.isnan().sum())
# if weights_sum.isnan().sum() > 0:
# import ipdb; ipdb.set_trace()
return {
'color': color,
'color_mask': rendering_valid_mask, # (N_rays, 1)
'color_mlp': color_mlp,
'color_mlp_mask': rendering_valid_mask_mlp,
'sdf': sdf, # (N_rays, n_samples)
'depth': depth, # (N_rays, 1)
'dists': dists,
'gradients': gradients.reshape(N_rays, n_samples, 3),
'variance': 1.0 / inv_variance,
'mid_z_vals': mid_z_vals,
'weights': weights,
'weights_sum': weights_sum,
'alpha_sum': alpha_sum,
'alpha_mean': alpha.mean(),
'cdf': c.reshape(N_rays, n_samples),
'gradient_error': gradient_error,
'inside_sphere': inside_sphere,
'blended_color_patch': blended_color_patch,
'blended_color_patch_mask': rendering_patch_mask,
'weights_sum_fg': weights_sum_fg
}
def render(self, rays_o, rays_d, near, far, sdf_network, rendering_network,
perturb_overwrite=-1,
background_rgb=None,
alpha_inter_ratio=0.0,
# * related to conditional feature
lod=None,
conditional_volume=None,
conditional_valid_mask_volume=None,
# * 2d feature maps
feature_maps=None,
color_maps=None,
w2cs=None,
intrinsics=None,
img_wh=None,
query_c2w=None, # -used for testing
if_general_rendering=True,
if_render_with_grad=True,
# * used for blending mlp rendering network
img_index=None,
rays_uv=None,
# * importance sample for second lod network
pre_sample=False, # no use here
# * for clear foreground
bg_ratio=0.0
):
device = rays_o.device
N_rays = len(rays_o)
# sample_dist = 2.0 / self.n_samples
sample_dist = ((far - near) / self.n_samples).mean().item()
z_vals = torch.linspace(0.0, 1.0, self.n_samples).to(device)
z_vals = near + (far - near) * z_vals[None, :]
bg_num = int(self.n_samples * bg_ratio)
if z_vals.shape[0] == 1:
z_vals = z_vals.repeat(N_rays, 1)
if bg_num > 0:
z_vals_bg = z_vals[:, self.n_samples - bg_num:]
z_vals = z_vals[:, :self.n_samples - bg_num]
n_samples = self.n_samples - bg_num
perturb = self.perturb
# - significantly speed up training, for the second lod network
if pre_sample:
z_vals = self.sample_z_vals_from_maskVolume(rays_o, rays_d, near, far,
conditional_valid_mask_volume)
if perturb_overwrite >= 0:
perturb = perturb_overwrite
if perturb > 0:
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], -1)
lower = torch.cat([z_vals[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape).to(device)
z_vals = lower + (upper - lower) * t_rand
background_alpha = None
background_sampled_color = None
z_val_before = z_vals.clone()
# Up sample
if self.n_importance > 0:
with torch.no_grad():
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
sdf_outputs = sdf_network.sdf(
pts.reshape(-1, 3), conditional_volume, lod=lod)
# pdb.set_trace()
sdf = sdf_outputs['sdf_pts_scale%d' % lod].reshape(N_rays, self.n_samples - bg_num)
n_steps = 4
for i in range(n_steps):
new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_importance // n_steps,
64 * 2 ** i,
conditional_valid_mask_volume=conditional_valid_mask_volume,
)
# if new_z_vals.isnan().sum() > 0:
# import ipdb; ipdb.set_trace()
z_vals, sdf = self.cat_z_vals(
rays_o, rays_d, z_vals, new_z_vals, sdf, lod,
sdf_network, gru_fusion=False,
conditional_volume=conditional_volume,
conditional_valid_mask_volume=conditional_valid_mask_volume,
)
del sdf
n_samples = self.n_samples + self.n_importance
# Background
ret_outside = None
# Render
if bg_num > 0:
z_vals = torch.cat([z_vals, z_vals_bg], dim=1)
# if z_vals.isnan().sum() > 0:
# import ipdb; ipdb.set_trace()
ret_fine = self.render_core(rays_o,
rays_d,
z_vals,
sample_dist,
lod,
sdf_network,
rendering_network,
background_rgb=background_rgb,
background_alpha=background_alpha,
background_sampled_color=background_sampled_color,
alpha_inter_ratio=alpha_inter_ratio,
# * related to conditional feature
conditional_volume=conditional_volume,
conditional_valid_mask_volume=conditional_valid_mask_volume,
# * 2d feature maps
feature_maps=feature_maps,
color_maps=color_maps,
w2cs=w2cs,
intrinsics=intrinsics,
img_wh=img_wh,
query_c2w=query_c2w,
if_general_rendering=if_general_rendering,
if_render_with_grad=if_render_with_grad,
# * used for blending mlp rendering network
img_index=img_index,
rays_uv=rays_uv
)
color_fine = ret_fine['color']
if self.n_outside > 0:
color_fine_mask = torch.logical_or(ret_fine['color_mask'], ret_outside['color_mask'])
else:
color_fine_mask = ret_fine['color_mask']
weights = ret_fine['weights']
weights_sum = ret_fine['weights_sum']
gradients = ret_fine['gradients']
mid_z_vals = ret_fine['mid_z_vals']
# depth = (mid_z_vals * weights[:, :n_samples]).sum(dim=1, keepdim=True)
depth = ret_fine['depth']
depth_varaince = ((mid_z_vals - depth) ** 2 * weights[:, :n_samples]).sum(dim=-1, keepdim=True)
variance = ret_fine['variance'].reshape(N_rays, n_samples).mean(dim=-1, keepdim=True)
# - randomly sample points from the volume, and maximize the sdf
pts_random = torch.rand([1024, 3]).float().to(device) * 2 - 1 # normalized to (-1, 1)
sdf_random = sdf_network.sdf(pts_random, conditional_volume, lod=lod)['sdf_pts_scale%d' % lod]
result = {
'depth': depth,
'color_fine': color_fine,
'color_fine_mask': color_fine_mask,
'color_outside': ret_outside['color'] if ret_outside is not None else None,
'color_outside_mask': ret_outside['color_mask'] if ret_outside is not None else None,
'color_mlp': ret_fine['color_mlp'],
'color_mlp_mask': ret_fine['color_mlp_mask'],
'variance': variance.mean(),
'cdf_fine': ret_fine['cdf'],
'depth_variance': depth_varaince,
'weights_sum': weights_sum,
'weights_max': torch.max(weights, dim=-1, keepdim=True)[0],
'alpha_sum': ret_fine['alpha_sum'].mean(),
'alpha_mean': ret_fine['alpha_mean'],
'gradients': gradients,
'weights': weights,
'gradient_error_fine': ret_fine['gradient_error'],
'inside_sphere': ret_fine['inside_sphere'],
'sdf': ret_fine['sdf'],
'sdf_random': sdf_random,
'blended_color_patch': ret_fine['blended_color_patch'],
'blended_color_patch_mask': ret_fine['blended_color_patch_mask'],
'weights_sum_fg': ret_fine['weights_sum_fg']
}
return result
@torch.no_grad()
def sample_z_vals_from_sdfVolume(self, rays_o, rays_d, near, far, sdf_volume, mask_volume):
# ? based on sdf to do importance sampling, seems that too biased on pre-estimation
device = rays_o.device
N_rays = len(rays_o)
n_samples = self.n_samples * 2
z_vals = torch.linspace(0.0, 1.0, n_samples).to(device)
z_vals = near + (far - near) * z_vals[None, :]
if z_vals.shape[0] == 1:
z_vals = z_vals.repeat(N_rays, 1)
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
sdf = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), sdf_volume).reshape([N_rays, n_samples])
new_z_vals = self.up_sample(rays_o, rays_d, z_vals, sdf, self.n_samples,
200,
conditional_valid_mask_volume=mask_volume,
)
return new_z_vals
@torch.no_grad()
def sample_z_vals_from_maskVolume(self, rays_o, rays_d, near, far, mask_volume): # don't use
device = rays_o.device
N_rays = len(rays_o)
n_samples = self.n_samples * 2
z_vals = torch.linspace(0.0, 1.0, n_samples).to(device)
z_vals = near + (far - near) * z_vals[None, :]
if z_vals.shape[0] == 1:
z_vals = z_vals.repeat(N_rays, 1)
mid_z_vals = (z_vals[:, 1:] + z_vals[:, :-1]) * 0.5
pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None]
pts_mask = self.get_pts_mask_for_conditional_volume(pts.view(-1, 3), mask_volume).reshape(
[N_rays, n_samples - 1])
# empty voxel set to 0.1, non-empty voxel set to 1
weights = torch.where(pts_mask > 0, torch.ones_like(pts_mask).to(device),
0.1 * torch.ones_like(pts_mask).to(device))
# sample more pts in non-empty voxels
z_samples = sample_pdf(z_vals, weights, self.n_samples, det=True).detach()
return z_samples
@torch.no_grad()
def filter_pts_by_depthmaps(self, coords, pred_depth_maps, proj_matrices,
partial_vol_origin, voxel_size,
near, far, depth_interval, d_plane_nums):
"""
Use the pred_depthmaps to remove redundant pts (pruned by sdf, sdf always have two sides, the back side is useless)
:param coords: [n, 3] int coords
:param pred_depth_maps: [N_views, 1, h, w]
:param proj_matrices: [N_views, 4, 4]
:param partial_vol_origin: [3]
:param voxel_size: 1
:param near: 1
:param far: 1
:param depth_interval: 1
:param d_plane_nums: 1
:return:
"""
device = pred_depth_maps.device
n_views, _, sizeH, sizeW = pred_depth_maps.shape
if len(partial_vol_origin.shape) == 1:
partial_vol_origin = partial_vol_origin[None, :]
pts = coords * voxel_size + partial_vol_origin
rs_grid = pts.unsqueeze(0).expand(n_views, -1, -1)
rs_grid = rs_grid.permute(0, 2, 1).contiguous() # [n_views, 3, n_pts]
nV = rs_grid.shape[-1]
rs_grid = torch.cat([rs_grid, torch.ones([n_views, 1, nV]).to(device)], dim=1) # [n_views, 4, n_pts]
# Project grid
im_p = proj_matrices @ rs_grid # - transform world pts to image UV space # [n_views, 4, n_pts]
im_x, im_y, im_z = im_p[:, 0], im_p[:, 1], im_p[:, 2]
im_x = im_x / im_z
im_y = im_y / im_z
im_grid = torch.stack([2 * im_x / (sizeW - 1) - 1, 2 * im_y / (sizeH - 1) - 1], dim=-1)
im_grid = im_grid.view(n_views, 1, -1, 2)
sampled_depths = torch.nn.functional.grid_sample(pred_depth_maps, im_grid, mode='bilinear',
padding_mode='zeros',
align_corners=True)[:, 0, 0, :] # [n_views, n_pts]
sampled_depths_valid = (sampled_depths > 0.5 * near).float()
valid_d_min = (sampled_depths - d_plane_nums * depth_interval).clamp(near.item(),
far.item()) * sampled_depths_valid
valid_d_max = (sampled_depths + d_plane_nums * depth_interval).clamp(near.item(),
far.item()) * sampled_depths_valid
mask = im_grid.abs() <= 1
mask = mask[:, 0] # [n_views, n_pts, 2]
mask = (mask.sum(dim=-1) == 2) & (im_z > valid_d_min) & (im_z < valid_d_max)
mask = mask.view(n_views, -1)
mask = mask.permute(1, 0).contiguous() # [num_pts, nviews]
mask_final = torch.sum(mask.float(), dim=1, keepdim=False) > 0
return mask_final
@torch.no_grad()
def get_valid_sparse_coords_by_sdf_depthfilter(self, sdf_volume, coords_volume, mask_volume, feature_volume,
pred_depth_maps, proj_matrices,
partial_vol_origin, voxel_size,
near, far, depth_interval, d_plane_nums,
threshold=0.02, maximum_pts=110000):
"""
assume batch size == 1, from the first lod to get sparse voxels
:param sdf_volume: [1, X, Y, Z]
:param coords_volume: [3, X, Y, Z]
:param mask_volume: [1, X, Y, Z]
:param feature_volume: [C, X, Y, Z]
:param threshold:
:return:
"""
device = coords_volume.device
_, dX, dY, dZ = coords_volume.shape
def prune(sdf_pts, coords_pts, mask_volume, threshold):
occupancy_mask = (torch.abs(sdf_pts) < threshold).squeeze(1) # [num_pts]
valid_coords = coords_pts[occupancy_mask]
# - filter backside surface by depth maps
mask_filtered = self.filter_pts_by_depthmaps(valid_coords, pred_depth_maps, proj_matrices,
partial_vol_origin, voxel_size,
near, far, depth_interval, d_plane_nums)
valid_coords = valid_coords[mask_filtered]
# - dilate
occupancy_mask = sparse_to_dense_channel(valid_coords, 1, [dX, dY, dZ], 1, 0, device) # [dX, dY, dZ, 1]
# - dilate
occupancy_mask = occupancy_mask.float()
occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
occupancy_mask = occupancy_mask.view(-1, 1) > 0
final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts]
return final_mask, torch.sum(final_mask.float())
C, dX, dY, dZ = feature_volume.shape
sdf_volume = sdf_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3)
mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C)
# - for check
# sdf_volume = torch.rand_like(sdf_volume).float().to(sdf_volume.device) * 0.02
final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold)
while (valid_num > maximum_pts) and (threshold > 0.003):
threshold = threshold - 0.002
final_mask, valid_num = prune(sdf_volume, coords_volume, mask_volume, threshold)
valid_coords = coords_volume[final_mask] # [N, 3]
valid_feature = feature_volume[final_mask] # [N, C]
valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0,
valid_coords], dim=1) # [N, 4], append batch idx
# ! if the valid_num is still larger than maximum_pts, sample part of pts
if valid_num > maximum_pts:
valid_num = valid_num.long()
occupancy = torch.ones([valid_num]).to(device) > 0
choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts,
replace=False)
ind = torch.nonzero(occupancy).to(device)
occupancy[ind[choice]] = False
valid_coords = valid_coords[occupancy]
valid_feature = valid_feature[occupancy]
print(threshold, "randomly sample to save memory")
return valid_coords, valid_feature
@torch.no_grad()
def get_valid_sparse_coords_by_sdf(self, sdf_volume, coords_volume, mask_volume, feature_volume, threshold=0.02,
maximum_pts=110000):
"""
assume batch size == 1, from the first lod to get sparse voxels
:param sdf_volume: [num_pts, 1]
:param coords_volume: [3, X, Y, Z]
:param mask_volume: [1, X, Y, Z]
:param feature_volume: [C, X, Y, Z]
:param threshold:
:return:
"""
def prune(sdf_volume, mask_volume, threshold):
occupancy_mask = torch.abs(sdf_volume) < threshold # [num_pts, 1]
# - dilate
occupancy_mask = occupancy_mask.float()
occupancy_mask = occupancy_mask.view(1, 1, dX, dY, dZ)
occupancy_mask = F.avg_pool3d(occupancy_mask, kernel_size=7, stride=1, padding=3)
occupancy_mask = occupancy_mask.view(-1, 1) > 0
final_mask = torch.logical_and(mask_volume, occupancy_mask)[:, 0] # [num_pts]
return final_mask, torch.sum(final_mask.float())
C, dX, dY, dZ = feature_volume.shape
coords_volume = coords_volume.permute(1, 2, 3, 0).contiguous().view(-1, 3)
mask_volume = mask_volume.permute(1, 2, 3, 0).contiguous().view(-1, 1)
feature_volume = feature_volume.permute(1, 2, 3, 0).contiguous().view(-1, C)
final_mask, valid_num = prune(sdf_volume, mask_volume, threshold)
while (valid_num > maximum_pts) and (threshold > 0.003):
threshold = threshold - 0.002
final_mask, valid_num = prune(sdf_volume, mask_volume, threshold)
valid_coords = coords_volume[final_mask] # [N, 3]
valid_feature = feature_volume[final_mask] # [N, C]
valid_coords = torch.cat([torch.ones([valid_coords.shape[0], 1]).to(valid_coords.device) * 0,
valid_coords], dim=1) # [N, 4], append batch idx
# ! if the valid_num is still larger than maximum_pts, sample part of pts
if valid_num > maximum_pts:
device = sdf_volume.device
valid_num = valid_num.long()
occupancy = torch.ones([valid_num]).to(device) > 0
choice = np.random.choice(valid_num.cpu().numpy(), valid_num.cpu().numpy() - maximum_pts,
replace=False)
ind = torch.nonzero(occupancy).to(device)
occupancy[ind[choice]] = False
valid_coords = valid_coords[occupancy]
valid_feature = valid_feature[occupancy]
print(threshold, "randomly sample to save memory")
return valid_coords, valid_feature
@torch.no_grad()
def extract_fields(self, bound_min, bound_max, resolution, query_func, device,
# * related to conditional feature
**kwargs
):
N = 64
X = torch.linspace(bound_min[0], bound_max[0], resolution).to(device).split(N)
Y = torch.linspace(bound_min[1], bound_max[1], resolution).to(device).split(N)
Z = torch.linspace(bound_min[2], bound_max[2], resolution).to(device).split(N)
u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
with torch.no_grad():
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs, indexing="ij")
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1)
# ! attention, the query function is different for extract geometry and fields
output = query_func(pts, **kwargs)
sdf = output['sdf_pts_scale%d' % kwargs['lod']].reshape(len(xs), len(ys),
len(zs)).detach().cpu().numpy()
u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = -1 * sdf
return u
@torch.no_grad()
def extract_geometry(self, sdf_network, bound_min, bound_max, resolution, threshold, device, occupancy_mask=None,
# * 3d feature volume
**kwargs
):
# logging.info('threshold: {}'.format(threshold))
u = self.extract_fields(bound_min, bound_max, resolution,
lambda pts, **kwargs: sdf_network.sdf(pts, **kwargs),
# - sdf need to be multiplied by -1
device,
# * 3d feature volume
**kwargs
)
if occupancy_mask is not None:
dX, dY, dZ = occupancy_mask.shape
empty_mask = 1 - occupancy_mask
empty_mask = empty_mask.view(1, 1, dX, dY, dZ)
# - dilation
# empty_mask = F.avg_pool3d(empty_mask, kernel_size=7, stride=1, padding=3)
empty_mask = F.interpolate(empty_mask, [resolution, resolution, resolution], mode='nearest')
empty_mask = empty_mask.view(resolution, resolution, resolution).cpu().numpy() > 0
u[empty_mask] = -100
del empty_mask
vertices, triangles = mcubes.marching_cubes(u, threshold)
b_max_np = bound_max.detach().cpu().numpy()
b_min_np = bound_min.detach().cpu().numpy()
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
return vertices, triangles, u
@torch.no_grad()
def extract_depth_maps(self, sdf_network, con_volume, intrinsics, c2ws, H, W, near, far):
"""
extract depth maps from the density volume
:param con_volume: [1, 1+C, dX, dY, dZ] can by con_volume or sdf_volume
:param c2ws: [B, 4, 4]
:param H:
:param W:
:param near:
:param far:
:return:
"""
device = con_volume.device
batch_size = intrinsics.shape[0]
with torch.no_grad():
ys, xs = torch.meshgrid(torch.linspace(0, H - 1, H),
torch.linspace(0, W - 1, W), indexing="ij") # pytorch's meshgrid has indexing='ij'
p = torch.stack([xs, ys, torch.ones_like(ys)], dim=-1) # H, W, 3
intrinsics_inv = torch.inverse(intrinsics)
p = p.view(-1, 3).float().to(device) # N_rays, 3
p = torch.matmul(intrinsics_inv[:, None, :3, :3], p[:, :, None]).squeeze() # Batch, N_rays, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # Batch, N_rays, 3
rays_v = torch.matmul(c2ws[:, None, :3, :3], rays_v[:, :, :, None]).squeeze() # Batch, N_rays, 3
rays_o = c2ws[:, None, :3, 3].expand(rays_v.shape) # Batch, N_rays, 3
rays_d = rays_v
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
################## - sphere tracer to extract depth maps ######################
depth_masks_sphere, depth_maps_sphere = self.ray_tracer.extract_depth_maps(
rays_o, rays_d,
near[None, :].repeat(rays_o.shape[0], 1),
far[None, :].repeat(rays_o.shape[0], 1),
sdf_network, con_volume
)
depth_maps = depth_maps_sphere.view(batch_size, 1, H, W)
depth_masks = depth_masks_sphere.view(batch_size, 1, H, W)
depth_maps = torch.where(depth_masks, depth_maps,
torch.zeros_like(depth_masks.float()).to(device)) # fill invalid pixels by 0
return depth_maps, depth_masks
|