File size: 7,427 Bytes
af6e330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
import time
import os
import subprocess
from datetime import datetime
from pathlib import Path

import boto3
import sagemaker
from sagemaker.pytorch import PyTorch


NAME = "openlm-main"
INSTANCE_MAPPER = {
    "p4": "ml.p4d.24xlarge",
    "p4de": "ml.p4de.24xlarge",
    "p5": "ml.p5.48xlarge",
}


def run_command(command):
    print(f"=> {command}")
    subprocess.run(command, shell=True, check=True)


def get_image(user, instance_type, build_type=None, profile="default", region="us-east-1"):
    os.environ["AWS_PROFILE"] = f"{profile}"
    account = subprocess.getoutput(
        f"aws --region {region} --profile {profile} sts get-caller-identity --query Account --output text"
    )
    docker_dir = Path(__file__).parent
    if instance_type in ("p4", "p4de"):
        algorithm_name = f"{user}-{NAME}-p4"
        dockerfile_base = docker_dir / "Dockerfile"
        dockerfile_update = docker_dir / "Dockerfile_update"
    elif instance_type == "p5":
        algorithm_name = f"{user}-{NAME}-p5"
        dockerfile_base = docker_dir / "Dockerfile"
        dockerfile_update = docker_dir / "Dockerfile_update"
    else:
        raise ValueError(f"Unknown instance_type: {instance_type}")
    fullname = f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest"
    if build_type is None:
        return fullname

    login_cmd = f"aws ecr get-login-password --region {region} --profile {profile} | docker login --username AWS --password-stdin"

    if build_type == "full":
        print("Building container")
        commands = [
            # Log in to Sagemaker account to get image.
            f"{login_cmd} 763104351884.dkr.ecr.{region}.amazonaws.com",
            f"docker build --progress=plain -f {dockerfile_base} --build-arg AWS_REGION={region} -t {algorithm_name} .",
            f"docker tag {algorithm_name} {fullname}",
            f"{login_cmd} {fullname}",
            (
                f"aws --region {region} ecr describe-repositories --repository-names {algorithm_name} || "
                f"aws --region {region} ecr create-repository --repository-name {algorithm_name}"
            ),
        ]
    elif build_type == "update":
        print("Updating container")
        commands = [
            f"docker build --progress=plain -f {dockerfile_update} --build-arg BASE_DOCKER={algorithm_name} -t {algorithm_name} .",
            f"docker tag {algorithm_name} {fullname}",
            f"{login_cmd} {fullname}",
        ]
    else:
        raise ValueError(f"Unknown build_type: {build_type}")

    # Create command, making sure to exit if any part breaks.
    command = "\n".join([f"{x} || exit 1" for x in commands])
    run_command(command)
    run_command(f"docker push {fullname}")
    print("Sleeping for 5 seconds to ensure push succeeded")
    time.sleep(5)
    return f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest"


def main():
    # Use first line of file docstring as description if it exists.
    parser = argparse.ArgumentParser()
    parser.add_argument("--build-type", choices=["full", "update"], help="Build image from scratch")
    parser.add_argument("--local", action="store_true")
    parser.add_argument("--user", required=True, help="User name")
    parser.add_argument("--cfg-path", required=True, help="Launch config")

    # AWS profile args
    parser.add_argument("--region", default="us-east-1", help="AWS region")
    parser.add_argument("--profile", default="default", help="AWS profile to use")
    parser.add_argument("--arn", default=None, help="If None, reads from SAGEMAKER_ARN env var")
    parser.add_argument(
        "--s3-remote-sync", default=None, help="S3 path to sync to. If none, reads from S3_REMOTE_SYNC env var"
    )

    # Instance args
    parser.add_argument("--instance-count", default=1, type=int, help="Number of instances")
    parser.add_argument("--instance-type", default="p4de", choices=list(INSTANCE_MAPPER.keys()))
    parser.add_argument("--spot-instance", action="store_true")

    args = parser.parse_args()
    main_after_setup_move(args)


def main_after_setup_move(args):
    if args.arn is None:
        assert "SAGEMAKER_ARN" in os.environ, "Please specify --arn or set the SAGEMAKER_ARN environment variable"
        args.arn = os.environ["SAGEMAKER_ARN"]

    if args.s3_remote_sync is None:
        assert (
            "S3_REMOTE_SYNC" in os.environ
        ), "Please specify --s3-remote-sync or set the S3_REMOTE_SYNC environment variable"
        args.s3_remote_sync = os.environ["S3_REMOTE_SYNC"]

    image = get_image(
        args.user,
        args.instance_type,
        region=args.region,
        build_type=args.build_type,
        profile=args.profile,
    )

    ##########
    # Create session and make sure of account and region
    ##########
    sagemaker_session = sagemaker.Session(boto_session=boto3.session.Session(region_name=args.region))

    if args.local:
        from sagemaker.local import LocalSession

        sagemaker_session = LocalSession()

    role = args.arn
    # provide a pre-existing role ARN as an alternative to creating a new role
    role_name = role.split(["/"][-1])
    print(f"SageMaker Execution Role:{role}")
    print(f"The name of the Execution role: {role_name[-1]}")

    client = boto3.client("sts")
    account = client.get_caller_identity()["Account"]
    print(f"AWS account:{account}")

    session = boto3.session.Session()
    region = session.region_name
    print(f"AWS region:{region}")

    ##########
    # Configure the training
    ##########
    base_job_name = f"{args.user.replace('.', '-')}-{NAME}"

    checkpoint_local_path = "/opt/ml/checkpoints"

    def get_job_name(base):
        now = datetime.now()
        # Format example: 2023-03-03-10-14-02-324
        now_ms_str = f"{now.microsecond // 1000:03d}"
        date_str = f"{now.strftime('%Y-%m-%d-%H-%M-%S')}-{now_ms_str}"

        job_name = "_".join([base, date_str])

        return job_name

    job_name = get_job_name(base_job_name)

    output_root = f"{args.s3_remote_sync}/sagemaker/{args.user}/{NAME}/"
    output_s3 = os.path.join(output_root, job_name)

    estimator = PyTorch(
        entry_point="open_lm/main.py",
        sagemaker_session=sagemaker_session,
        base_job_name=base_job_name,
        hyperparameters={"config": args.cfg_path},
        role=role,
        image_uri=image,
        instance_count=args.instance_count,
        instance_type="local_gpu" if args.local else INSTANCE_MAPPER[args.instance_type],
        train_use_spot_instances=args.spot_instance,
        output_path=output_s3,
        job_name=job_name,
        checkpoint_s3_uri=None if args.local else f"{output_s3}/checkpoint",
        checkpoint_local_path=None if args.local else checkpoint_local_path,
        code_location=output_s3,
        # Training using SMDataParallel Distributed Training Framework
        distribution={"torch_distributed": {"enabled": True}},
        # Max run 5 days
        max_run=5 * 24 * 60 * 60,
        max_wait=5 * 24 * 60 * 60 if args.spot_instance else None,
        input_mode="FastFile",
        # environment={"TORCH_DISTRIBUTED_DEBUG": "DETAIL", "TORCH_CPP_LOG_LEVEL": "INFO"},
        environment={"SM_USE_RESERVED_CAPACITY": "1"},
        keep_alive_period_in_seconds=30 * 60 if not args.spot_instance else None,  # 30 minutes
    )

    estimator.fit()


if __name__ == "__main__":
    main()