File size: 7,161 Bytes
c6de88b
06f1de7
c6de88b
1ee8c97
 
 
fb16ac2
1ee8c97
 
 
 
 
193ac55
 
1ee8c97
 
193ac55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee8c97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
license: mit
---



# Chinese-CLIP-ViT-Large-Patch14

## Introduction
This is the large-version of the Chinese CLIP, with ViT-L/14 as the image encoder and RoBERTa-wwm-base as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP

## Use with the official API
We provide a simple code snippet to show how to use the API of Chinese-CLIP to compute the image & text embeddings and similarities. 

```python
from PIL import Image
import requests
from transformers import ChineseCLIPProcessor, ChineseCLIPModel

model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14")
processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-large-patch14")

url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
# Squirtle, Bulbasaur, Charmander, Pikachu in English
texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]

# compute image feature
inputs = processor(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs)
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)  # normalize

# compute text features
inputs = processor(text=texts, padding=True, return_tensors="pt")
text_features = model.get_text_features(**inputs)
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)  # normalize

# compute image-text similarity scores
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1)  # probs: [[0.0066, 0.0211, 0.0031, 0.9692]]
```

However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. 
<br><br>

## Results
**MUGE Text-to-Image Retrieval**:
<table border="1" width="100%">
    <tr align="center">
        <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th>
    </tr>
    <tr align="center">
        <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td>
    </tr>
	<tr align="center">
        <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td>
    </tr>
	<tr align="center">
        <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td>
    </tr>
	<tr align="center">
        <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td>
    </tr>
</table>
<br>

**Flickr30K-CN Retrieval**:
<table border="1" width="120%">
	<tr align="center">
        <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th>
    </tr>
    <tr align="center">
        <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th>
    </tr>
    <tr align="center">
        <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
    </tr>
	<tr align="center">
        <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td>
    </tr>
	<tr align="center">
        <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td>
    </tr>
	<tr align="center">
        <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td>
    </tr>
</table>
<br>

**COCO-CN Retrieval**:
<table border="1" width="100%">
	<tr align="center">
        <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th>
    </tr>
    <tr align="center">
        <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th>
    </tr>
    <tr align="center">
        <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
    </tr>
	<tr align="center">
        <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td>
    </tr>
	<tr align="center">
        <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td>
    </tr>
	<tr align="center">
        <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td>
    </tr>
</table>
<br>

**Zero-shot Image Classification**:
<table border="1" width="100%">
	<tr align="center">
        <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th>
    </tr>
	<tr align="center">
        <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td>
    </tr>
    	<tr align="center">
        <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td>
    </tr>
	<tr align="center">
        <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td>
    </tr>
    	<tr align="center">
        <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td>
    </tr>
    	<tr align="center">
        <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td>
    </tr>
</table>
<br>

## Citation
If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support!

```
@article{chinese-clip,
  title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese},
  author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang},
  journal={arXiv preprint arXiv:2211.01335},
  year={2022}
}
```
<br>