File size: 7,088 Bytes
dccea3f
 
 
549ca72
c55439c
4fbc4cf
549ca72
 
 
 
cbfc8da
549ca72
 
 
 
 
 
70cc6c7
549ca72
 
 
 
c55439c
549ca72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ee4e5
549ca72
 
 
 
 
 
 
 
99ee4e5
 
549ca72
99ee4e5
 
 
 
 
549ca72
99ee4e5
549ca72
99ee4e5
 
549ca72
 
 
 
 
 
 
 
 
 
99ee4e5
 
 
 
 
549ca72
99ee4e5
 
549ca72
99ee4e5
549ca72
99ee4e5
549ca72
 
 
 
 
 
 
 
 
 
 
99ee4e5
 
549ca72
99ee4e5
 
 
 
 
549ca72
41af8fa
 
99ee4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8d6e7c
99ee4e5
41af8fa
c55439c
41af8fa
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: apache-2.0
---


# Chinese-CLIP-ViT-Base-Patch16

## Introduction
This is the base-version of the Chinese CLIP. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP

## Use with the official API
We provide a simple code snippet to show how to use the API for Chinese-CLIP. For starters, please install cn_clip:
```bash
# to install the latest stable release
pip install cn_clip

# or install from source code
cd Chinese-CLIP
pip install -e .
```
After installation, use Chinese CLIP as shown below:
```python
import torch
from PIL import Image

import cn_clip.clip as clip
from cn_clip.clip import load_from_name, available_models
print("Available models:", available_models())  
# Available models: ['ViT-B-16', 'ViT-L-14', 'ViT-L-14-336', 'ViT-H-14', 'RN50']

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = load_from_name("ViT-B-16", device=device, download_root='./')
model.eval()
image = preprocess(Image.open("examples/pokemon.jpeg")).unsqueeze(0).to(device)
text = clip.tokenize(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    # Normalize the features. Please use the normalized features for downstream tasks.
    image_features /= image_features.norm(dim=-1, keepdim=True) 
    text_features /= text_features.norm(dim=-1, keepdim=True)      

    logits_per_image, logits_per_text = model.get_similarity(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # [[1.268734e-03 5.436878e-02 6.795761e-04 9.436829e-01]]
```

However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. 
<br><br>

## Results
**MUGE Text-to-Image Retrieval**:
<table border="1" width="100%">
    <tr align="center">
        <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th>
    </tr>
    <tr align="center">
        <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td>
    </tr>
	<tr align="center">
        <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td>
    </tr>
	<tr align="center">
        <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td>
    </tr>
	<tr align="center">
        <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td>
    </tr>
</table>
<br>

**Flickr30K-CN Retrieval**:
<table border="1" width="120%">
	<tr align="center">
        <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th>
    </tr>
    <tr align="center">
        <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th>
    </tr>
    <tr align="center">
        <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
    </tr>
	<tr align="center">
        <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td>
    </tr>
	<tr align="center">
        <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td>
    </tr>
	<tr align="center">
        <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td>
    </tr>
</table>
<br>

**COCO-CN Retrieval**:
<table border="1" width="100%">
	<tr align="center">
        <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th>
    </tr>
    <tr align="center">
        <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th>
    </tr>
    <tr align="center">
        <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
    </tr>
	<tr align="center">
        <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td>
    </tr>
	<tr align="center">
        <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td>
    </tr>
	<tr align="center">
        <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td>
    </tr>
</table>
<br>

**Zero-shot Image Classification**:
<table border="1" width="100%">
	<tr align="center">
        <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th>
    </tr>
	<tr align="center">
        <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td>
    </tr>
    	<tr align="center">
        <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td>
    </tr>
	<tr align="center">
        <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td>
    </tr>
    	<tr align="center">
        <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td>
    </tr>
    	<tr align="center">
        <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td>
    </tr>
</table>
<br>

## Citation
If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support!

```
@article{chinese-clip,
  title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese},
  author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang},
  journal={arXiv preprint arXiv:2211.01335},
  year={2022}
}
```
<br>