senwu
commited on
Commit
·
6146518
0
Parent(s):
initial commit
Browse files- .gitattributes +35 -0
- README.md +150 -0
- added_tokens.json +40 -0
- config.json +43 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
- vocab.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
inference:
|
4 |
+
parameters:
|
5 |
+
do_sample: false
|
6 |
+
max_length: 200
|
7 |
+
widget:
|
8 |
+
- text: "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n)\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many stadiums in total?\n\nSELECT"
|
9 |
+
example_title: "Number stadiums"
|
10 |
+
- text: "CREATE TABLE work_orders ( ID NUMBER, CREATED_AT TEXT, COST FLOAT, INVOICE_AMOUNT FLOAT, IS_DUE BOOLEAN, IS_OPEN BOOLEAN, IS_OVERDUE BOOLEAN, COUNTRY_NAME TEXT, )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- how many work orders are open?\n\nSELECT"
|
11 |
+
example_title: "Open work orders"
|
12 |
+
- text: "CREATE TABLE stadium ( stadium_id number, location text, name text, capacity number, highest number, lowest number, average number )\n\nCREATE TABLE singer ( singer_id number, name text, country text, song_name text, song_release_year text, age number, is_male others )\n\nCREATE TABLE concert ( concert_id number, concert_name text, theme text, stadium_id text, year text )\n\nCREATE TABLE singer_in_concert ( concert_id number, singer_id text )\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the maximum, the average, and the minimum capacity of stadiums ?\n\nSELECT"
|
13 |
+
example_title: "Stadium capacity"
|
14 |
+
---
|
15 |
+
|
16 |
+
# NSQL (NSQL-350M)
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.
|
21 |
+
|
22 |
+
The checkpoint included in this repository is based on [CodeGen-Multi 350M](https://huggingface.co/Salesforce/codegen-350M-multi) from Salesforce and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of text-to-SQL pairs.
|
23 |
+
|
24 |
+
## Training Data
|
25 |
+
|
26 |
+
The general SQL queries are the SQL subset from [The Stack](https://huggingface.co/datasets/bigcode/the-stack), containing 1M training samples. The labeled text-to-SQL pairs come from more than 20 public sources across the web from standard datasets. We hold out Spider and GeoQuery datasets for use in evaluation.
|
27 |
+
|
28 |
+
## Evaluation Data
|
29 |
+
|
30 |
+
We evaluate our models on two text-to-SQL benchmarks: Spider and GeoQuery.
|
31 |
+
|
32 |
+
## Training Procedure
|
33 |
+
|
34 |
+
NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The family of models is trained using 80GB A100s, leveraging data and model parallelism. We pre-trained for 3 epochs and fine-tuned for 10 epochs.
|
35 |
+
|
36 |
+
## Intended Use and Limitations
|
37 |
+
|
38 |
+
The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputting `SELECT` queries.
|
39 |
+
|
40 |
+
## How to Use
|
41 |
+
|
42 |
+
Example 1:
|
43 |
+
|
44 |
+
```python
|
45 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-350M")
|
47 |
+
model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-350M")
|
48 |
+
|
49 |
+
text = """CREATE TABLE stadium (
|
50 |
+
stadium_id number,
|
51 |
+
location text,
|
52 |
+
name text,
|
53 |
+
capacity number,
|
54 |
+
highest number,
|
55 |
+
lowest number,
|
56 |
+
average number
|
57 |
+
)
|
58 |
+
|
59 |
+
CREATE TABLE singer (
|
60 |
+
singer_id number,
|
61 |
+
name text,
|
62 |
+
country text,
|
63 |
+
song_name text,
|
64 |
+
song_release_year text,
|
65 |
+
age number,
|
66 |
+
is_male others
|
67 |
+
)
|
68 |
+
|
69 |
+
CREATE TABLE concert (
|
70 |
+
concert_id number,
|
71 |
+
concert_name text,
|
72 |
+
theme text,
|
73 |
+
stadium_id text,
|
74 |
+
year text
|
75 |
+
)
|
76 |
+
|
77 |
+
CREATE TABLE singer_in_concert (
|
78 |
+
concert_id number,
|
79 |
+
singer_id text
|
80 |
+
)
|
81 |
+
|
82 |
+
-- Using valid SQLite, answer the following questions for the tables provided above.
|
83 |
+
|
84 |
+
-- What is the maximum, the average, and the minimum capacity of stadiums ?
|
85 |
+
|
86 |
+
SELECT"""
|
87 |
+
|
88 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
89 |
+
|
90 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
91 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
92 |
+
```
|
93 |
+
|
94 |
+
Example 2:
|
95 |
+
|
96 |
+
```python
|
97 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
98 |
+
tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-350M")
|
99 |
+
model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-350M")
|
100 |
+
|
101 |
+
text = """CREATE TABLE stadium (
|
102 |
+
stadium_id number,
|
103 |
+
location text,
|
104 |
+
name text,
|
105 |
+
capacity number,
|
106 |
+
)
|
107 |
+
|
108 |
+
-- Using valid SQLite, answer the following questions for the tables provided above.
|
109 |
+
|
110 |
+
-- how many stadiums in total?
|
111 |
+
|
112 |
+
SELECT"""
|
113 |
+
|
114 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
115 |
+
|
116 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
117 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
118 |
+
```
|
119 |
+
|
120 |
+
Example 3:
|
121 |
+
|
122 |
+
```python
|
123 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
124 |
+
tokenizer = AutoTokenizer.from_pretrained("NumbersStation/nsql-350M")
|
125 |
+
model = AutoModelForCausalLM.from_pretrained("NumbersStation/nsql-350M")
|
126 |
+
|
127 |
+
text = """CREATE TABLE work_orders (
|
128 |
+
ID NUMBER,
|
129 |
+
CREATED_AT TEXT,
|
130 |
+
COST FLOAT,
|
131 |
+
INVOICE_AMOUNT FLOAT,
|
132 |
+
IS_DUE BOOLEAN,
|
133 |
+
IS_OPEN BOOLEAN,
|
134 |
+
IS_OVERDUE BOOLEAN,
|
135 |
+
COUNTRY_NAME TEXT,
|
136 |
+
)
|
137 |
+
|
138 |
+
-- Using valid SQLite, answer the following questions for the tables provided above.
|
139 |
+
|
140 |
+
-- how many work orders are open?
|
141 |
+
|
142 |
+
SELECT"""
|
143 |
+
|
144 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
145 |
+
|
146 |
+
generated_ids = model.generate(input_ids, max_length=500)
|
147 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
148 |
+
```
|
149 |
+
|
150 |
+
For more information (e.g., run with your local database), please find examples in [this repository](https://github.com/NumbersStationAI/NSQL).
|
added_tokens.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257
|
40 |
+
}
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nsql-350M",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"CodeGenForCausalLM"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"embd_pdrop": 0.0,
|
10 |
+
"eos_token_id": 50256,
|
11 |
+
"gradient_checkpointing": false,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"layer_norm_epsilon": 1e-05,
|
14 |
+
"model_type": "codegen",
|
15 |
+
"n_ctx": 2048,
|
16 |
+
"n_embd": 1024,
|
17 |
+
"n_head": 16,
|
18 |
+
"n_inner": null,
|
19 |
+
"n_layer": 20,
|
20 |
+
"n_positions": 2048,
|
21 |
+
"pad_token_id": 50256,
|
22 |
+
"resid_pdrop": 0.0,
|
23 |
+
"rotary_dim": 32,
|
24 |
+
"scale_attn_weights": true,
|
25 |
+
"summary_activation": null,
|
26 |
+
"summary_first_dropout": 0.1,
|
27 |
+
"summary_proj_to_labels": true,
|
28 |
+
"summary_type": "cls_index",
|
29 |
+
"summary_use_proj": true,
|
30 |
+
"task_specific_params": {
|
31 |
+
"text-generation": {
|
32 |
+
"do_sample": true,
|
33 |
+
"max_length": 50,
|
34 |
+
"temperature": 1.0
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"tie_word_embeddings": false,
|
38 |
+
"tokenizer_class": "GPT2Tokenizer",
|
39 |
+
"torch_dtype": "float32",
|
40 |
+
"transformers_version": "4.28.1",
|
41 |
+
"use_cache": true,
|
42 |
+
"vocab_size": 51200
|
43 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.28.1"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f333ac3d1d5dcb2e1230f14bd3e2c6bab8ed1259dc6cabe8caf990c30154c620
|
3 |
+
size 1510794225
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 2048,
|
7 |
+
"tokenizer_class": "CodeGenTokenizer",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|