File size: 115,220 Bytes
91c62dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
"""
2025.9.14
2025.9.11
4.56.2
0.23.0
__UNSLOTH_VERSIONING__
"""

# Unsloth auto generated code
# Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
from trl.trainer.online_dpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, BasePairwiseJudge, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalPrediction, F, FSDP, GenerationConfig, IterableDataset, MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES, OnlineDPOConfig, OnlineDPOTrainer, OptimizerNames, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RewardFunc, SIMPLE_CHAT_TEMPLATE, Trainer, TrainerCallback, Union, VLLMClient, apply_chat_template, broadcast_object_list, create_reference_model, disable_dropout_in_model, empty_cache, gather_object, generate_model_card, get_comet_experiment_url, is_conversational, is_flash_attn_2_available, is_peft_model, is_vllm_available, is_wandb_available, jinja2, logger, logging, maybe_apply_chat_template, nn, nullcontext, os, pad, prepare_deepspeed, prepare_peft_model, profiling_context, re, seed_worker, textwrap, torch, truncate_right, unwrap_model_for_generation, version, wandb, warnings, wraps, F, apply_chat_template, is_conversational, re, F, FSDP, is_peft_model, nn, nullcontext, os, re, version, F, Optional, PreTrainedModel, Trainer, logger, os, re, torch, F, FSDP, nn, os, re, F, FSDP, nn, re, torch)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
from transformers.training_args import ParallelMode

# Wrap trainer with padding to right and enable training mode
import functools
from types import MethodType
def prepare_for_training_mode(f):
    @functools.wraps(f)
    def wrapper(self, *args, **kwargs):
        # Enable training mode
        if hasattr(self, 'model') and hasattr(self.model, "for_training"):
            self.model.for_training()
        output = f(self, *args, **kwargs)
        # Return inference mode
        if hasattr(self, 'model') and hasattr(self.model, "for_inference"):
            self.model.for_inference()
        return output
    return wrapper
pass

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def chunked_selective_log_softmax(logits, index):
    # Split into 4 chunks only
    chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0)
    chunked_index  = torch.chunk(index.reshape(-1), chunks = 4, dim = 0)
    all_per_token_logps = []
    # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index)
    for chunk_logits, chunk_index in zip(chunked_logits, chunked_index):
        chunk_logits = chunk_logits.to(torch.float32)
        selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1)
        logsumexp_values = torch.logsumexp(chunk_logits, dim = -1)
        per_token_logps = selected_logits - logsumexp_values
        all_per_token_logps.append(per_token_logps)
    pass
    all_per_token_logps = torch.concat(all_per_token_logps)
    all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1]))
    return all_per_token_logps

def calculate_pad_tokens_in_prompt(
    input_ids: torch.Tensor,
    logits_to_keep: int,
    pad_token_id: int
) -> torch.Tensor:
    """
    Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens 
    """
    if logits_to_keep >= input_ids.shape[1]:
        raise ValueError("logits_to_keep must be smaller than the sequence length.")

    prompt_section = input_ids[:, :-logits_to_keep]

    padding_mask = (prompt_section == pad_token_id)

    pad_token_counts = padding_mask.sum(dim=1)

    return pad_token_counts

def create_completion_attention_mask(
    completion_input_ids: torch.Tensor,
    left_pad_tokens_per_prompt: torch.Tensor,
    max_left_pad: int,
    pad_token_id: int
) -> torch.Tensor:
    """
    Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad]

    Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens
    and pad are pad tokens, this function would make a completion mask that would 0 out the pad
    and p tokens. so in this example [0,0,0,1,1,1,0,0,0]
    """
    batch_size, completion_len = completion_input_ids.shape
    device = completion_input_ids.device

    num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt

    indices = torch.arange(completion_len, device=device).unsqueeze(0)
    shift_mask = indices >= num_tokens_to_mask.unsqueeze(1)

    non_padding_mask = (completion_input_ids != pad_token_id)

    final_mask = shift_mask & non_padding_mask

    return final_mask

def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor:
    """
    Moves all padding tokens in each sequence of a batch to the right.
    """
    mask = (tensor != pad_id)
    # Must do stable=True since binary mark is unordered
    sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True)
    packed_tensor = torch.gather(tensor, 1, sorted_indices)
    return packed_tensor
def vLLMSamplingParams(**kwargs):
    from vllm import SamplingParams
    sampling_params = SamplingParams(**kwargs)
    sampling_params._set_kwargs = kwargs
    return sampling_params
@dataclass
class UnslothOnlineDPOConfig(OnlineDPOConfig):
    """
    
    Configuration class for the [`OnlineDPOTrainer`].

    This class includes only the parameters that are specific to Online DPO training. For a full list of training
    arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this
    class may differ from those in [`~transformers.TrainingArguments`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        reward_model_path (`str` or `None`, *optional*, defaults to `None`):
            Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both.
        judge (`str` or `None`, *optional*, defaults to `None`):
            Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both.
        max_new_tokens (`int`, *optional*, defaults to `64`):
            Maximum number of tokens to generate per completion.
        max_length (`int`, *optional*, defaults to `256`):
            Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the
            sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as
            possible.
        temperature (`float`, *optional*, defaults to `0.9`):
            Temperature for sampling. The higher the temperature, the more random the completions.
        missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`):
            Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage to
            generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive
            value. This parameter only works when using `reward_funcs` and not when using `judge`.
        beta (`float` or `list[float]`, *optional*, defaults to `0.1`):
            Parameter controlling the deviation from the reference model. Higher β means less deviation from the
            reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in
            the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the β is
            selected for each new epoch and the last β is used for the rest of the epochs.
        loss_type (`str`, *optional*, defaults to `"sigmoid"`):
            Type of loss to use. Possible values are:

                - `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper.
                - `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper.

        dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        disable_dropout (`bool`, *optional*, defaults to `True`):
            Whether to disable dropout in the model and reference model.

        > Parameters that control generation

        top_p (`float`, *optional*, defaults to `1.0`):
            Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to
            `1.0` to consider all tokens.
        top_k (`int` or `None`, *optional*, defaults to `None`):
            Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is
            disabled and all tokens are considered.
        min_p (`float` or `None`, *optional*, defaults to `None`):
            Minimum token probability, which will be scaled by the probability of the most likely token. It must be a
            value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range.
        repetition_penalty (`float`, *optional*, defaults to `1.0`):
            Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far.
            Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat
            tokens.
        use_transformers_paged (`bool`, *optional*, defaults to `False`):
            Whether to use the `transformers` paged implementation for generation. If set to `True`, the `transformers`
            paged implementation will be used for generation instead of the default padded implementation. This
            parameter is only effective when `use_vllm` is set to `False`.
        cache_implementation (`str` or `None`, *optional*, defaults to `None`):
            Implementation of the cache method for faster generation when `use_vllm` is set to `False`.
        generation_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Additional keyword arguments to pass to `GenerationConfig` (if using transformers) or `SamplingParams` (if
            using vLLM) when sampling completions. This can be used to further customize the generation behavior, such
            as setting `supress_tokens`, `num_beams`, etc. If it contains keys that conflict with the other generation
            parameters (like `min_p`, `top_p`, etc.), they will override them.

        > Parameters that control generation acceleration powered by vLLM

        use_vllm (`bool`, *optional*, defaults to `False`):
            Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation
            instead of the default model.generate(). Requires `vllm` to be installed.
        vllm_model_impl (`str`, *optional*, defaults to `"vllm"`):
            Model implementation to use for vLLM. Must be one of `"transformers"` or `"vllm"`. `"transformers"`: Use
            the `transformers` backend for model implementation. `"vllm"`: Use the `vllm` library for model
            implementation.
        vllm_mode (`str`, *optional*, defaults to `"server"`):
            Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or
            `"colocate"`.

            - `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM
              server is running (start with `trl vllm-serve`).
            - `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a
              separate server but may cause resource contention with training.
        vllm_guided_decoding_regex (`str` or `None`, *optional*, defaults to `None`):
            Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled.

        > Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`)

        vllm_server_base_url (`str` or `None`, *optional*, defaults to `None`):
            Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and
            `vllm_server_port` are ignored.
        vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`):
            Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided.
        vllm_server_port (`int`, *optional*, defaults to `8000`):
            Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided.
        vllm_server_timeout (`float`, *optional*, defaults to `240.0`):
            Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the
            timeout, a `ConnectionError` is raised.

        > Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`)

        vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.55`):
            Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to
            `"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when
            launching the vLLM server via the `--vllm_gpu_memory_utilization` flag.
        vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`):
            Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to
            `"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when
            launching the vLLM server via the `--vllm_tensor_parallel_size` flag.

        > Other parameters

        ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
            This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
            improving generation speed. However, disabling this option allows training models that exceed the VRAM
            capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible
            with vLLM generation.
        model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a
            string.
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    max_seq_length : Optional[int] = field(
        default = None,
        metadata = {'help': 'Maximum sequence length to truncate to.'},
    )
    def __init__(
        self,
        output_dir = None,
        overwrite_output_dir = None,
        do_train = False,
        do_eval = False,
        do_predict = False,
        eval_strategy = 'no',
        prediction_loss_only = False,
        per_device_train_batch_size = 4,
        per_device_eval_batch_size = 4,
        per_gpu_train_batch_size = None,
        per_gpu_eval_batch_size = None,
        gradient_accumulation_steps = 2,
        eval_accumulation_steps = 2,
        eval_delay = 0,
        torch_empty_cache_steps = 250,
        learning_rate = 5e-05,
        weight_decay = 0.01,
        adam_beta1 = 0.9,
        adam_beta2 = 0.999,
        adam_epsilon = 1e-08,
        max_grad_norm = 1.0,
        num_train_epochs = 3.0,
        max_steps = -1,
        lr_scheduler_type = 'linear',
        warmup_ratio = 0.1,
        warmup_steps = 0,
        log_level = 'passive',
        log_level_replica = 'warning',
        log_on_each_node = True,
        logging_dir = None,
        logging_strategy = 'steps',
        logging_first_step = False,
        logging_steps = 1,
        logging_nan_inf_filter = False,
        save_strategy = 'steps',
        save_steps = 500,
        save_total_limit = None,
        save_safetensors = True,
        save_on_each_node = False,
        save_only_model = False,
        restore_callback_states_from_checkpoint = False,
        no_cuda = False,
        use_cpu = False,
        use_mps_device = False,
        seed = 3407,
        data_seed = 3407,
        jit_mode_eval = False,
        use_ipex = False,
        bf16 = False,
        fp16 = False,
        fp16_opt_level = 'O1',
        half_precision_backend = 'auto',
        bf16_full_eval = False,
        fp16_full_eval = False,
        tf32 = None,
        local_rank = -1,
        ddp_backend = None,
        tpu_num_cores = None,
        tpu_metrics_debug = False,
        debug = '',
        dataloader_drop_last = False,
        eval_steps = None,
        dataloader_num_workers = 0,
        dataloader_prefetch_factor = None,
        past_index = -1,
        run_name = None,
        disable_tqdm = None,
        remove_unused_columns = True,
        label_names = None,
        load_best_model_at_end = False,
        metric_for_best_model = None,
        greater_is_better = None,
        ignore_data_skip = False,
        fsdp = '',
        fsdp_min_num_params = 0,
        fsdp_config = None,
        fsdp_transformer_layer_cls_to_wrap = None,
        accelerator_config = None,
        parallelism_config = None,
        deepspeed = None,
        label_smoothing_factor = 0.0,
        optim = 'adamw_8bit',
        optim_args = None,
        adafactor = False,
        group_by_length = False,
        length_column_name = 'length',
        report_to = None,
        ddp_find_unused_parameters = None,
        ddp_bucket_cap_mb = None,
        ddp_broadcast_buffers = None,
        dataloader_pin_memory = True,
        dataloader_persistent_workers = False,
        skip_memory_metrics = True,
        use_legacy_prediction_loop = False,
        push_to_hub = False,
        resume_from_checkpoint = None,
        hub_model_id = None,
        hub_strategy = 'every_save',
        hub_token = None,
        hub_private_repo = None,
        hub_always_push = False,
        hub_revision = None,
        gradient_checkpointing = True,
        gradient_checkpointing_kwargs = None,
        include_inputs_for_metrics = False,
        eval_do_concat_batches = True,
        fp16_backend = 'auto',
        push_to_hub_model_id = None,
        push_to_hub_organization = None,
        push_to_hub_token = None,
        mp_parameters = '',
        auto_find_batch_size = False,
        full_determinism = False,
        torchdynamo = None,
        ray_scope = 'last',
        ddp_timeout = 1800,
        torch_compile = False,
        torch_compile_backend = None,
        torch_compile_mode = None,
        include_tokens_per_second = False,
        include_num_input_tokens_seen = False,
        neftune_noise_alpha = None,
        optim_target_modules = None,
        batch_eval_metrics = False,
        eval_on_start = False,
        use_liger_kernel = False,
        liger_kernel_config = None,
        eval_use_gather_object = False,
        average_tokens_across_devices = True,
        reward_model_path = None,
        judge = None,
        max_new_tokens = 64,
        max_length = 512,
        temperature = 0.9,
        top_p = 1.0,
        top_k = None,
        min_p = None,
        repetition_penalty = 1.0,
        generation_kwargs = {},
        use_transformers_paged = False,
        cache_implementation = None,
        missing_eos_penalty = None,
        loss_type = 'sigmoid',
        disable_dropout = True,
        use_vllm = False,
        vllm_model_impl = 'vllm',
        vllm_guided_decoding_regex = None,
        vllm_gpu_memory_utilization = 0.55,
        vllm_mode = 'colocate',
        vllm_server_base_url = None,
        vllm_server_host = '0.0.0.0',
        vllm_server_port = 8000,
        vllm_server_timeout = 240.0,
        vllm_tensor_parallel_size = 1,
        ds3_gather_for_generation = True,
        model_init_kwargs = None,
        reward_weights = None,
        dataset_num_proc = None,
        gpu_memory_utilization = None,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        max_seq_length = None,
        **kwargs,
    ):
        if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
        if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
        if output_dir is None and save_strategy == 'steps' and save_steps == 500:
            output_dir = 'unsloth_training_checkpoints'
            save_strategy = 'no'
        if dataset_num_proc is None:
            from multiprocessing import cpu_count
            dataset_num_proc = max(cpu_count()+4, 2)
        if temperature <= 0:
            raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.')
        elif temperature >= 10:
            raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.')
        
        
        super().__init__(
            output_dir = output_dir,
            overwrite_output_dir = overwrite_output_dir,
            do_train = do_train,
            do_eval = do_eval,
            do_predict = do_predict,
            eval_strategy = eval_strategy,
            prediction_loss_only = prediction_loss_only,
            per_device_train_batch_size = per_device_train_batch_size,
            per_device_eval_batch_size = per_device_eval_batch_size,
            per_gpu_train_batch_size = per_gpu_train_batch_size,
            per_gpu_eval_batch_size = per_gpu_eval_batch_size,
            gradient_accumulation_steps = gradient_accumulation_steps,
            eval_accumulation_steps = eval_accumulation_steps,
            eval_delay = eval_delay,
            torch_empty_cache_steps = torch_empty_cache_steps,
            learning_rate = learning_rate,
            weight_decay = weight_decay,
            adam_beta1 = adam_beta1,
            adam_beta2 = adam_beta2,
            adam_epsilon = adam_epsilon,
            max_grad_norm = max_grad_norm,
            num_train_epochs = num_train_epochs,
            max_steps = max_steps,
            lr_scheduler_type = lr_scheduler_type,
            warmup_ratio = warmup_ratio,
            warmup_steps = warmup_steps,
            log_level = log_level,
            log_level_replica = log_level_replica,
            log_on_each_node = log_on_each_node,
            logging_dir = logging_dir,
            logging_strategy = logging_strategy,
            logging_first_step = logging_first_step,
            logging_steps = logging_steps,
            logging_nan_inf_filter = logging_nan_inf_filter,
            save_strategy = save_strategy,
            save_steps = save_steps,
            save_total_limit = save_total_limit,
            save_safetensors = save_safetensors,
            save_on_each_node = save_on_each_node,
            save_only_model = save_only_model,
            restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
            no_cuda = no_cuda,
            use_cpu = use_cpu,
            use_mps_device = use_mps_device,
            seed = seed,
            data_seed = data_seed,
            jit_mode_eval = jit_mode_eval,
            use_ipex = use_ipex,
            bf16 = bf16,
            fp16 = fp16,
            fp16_opt_level = fp16_opt_level,
            half_precision_backend = half_precision_backend,
            bf16_full_eval = bf16_full_eval,
            fp16_full_eval = fp16_full_eval,
            tf32 = tf32,
            local_rank = local_rank,
            ddp_backend = ddp_backend,
            tpu_num_cores = tpu_num_cores,
            tpu_metrics_debug = tpu_metrics_debug,
            debug = debug,
            dataloader_drop_last = dataloader_drop_last,
            eval_steps = eval_steps,
            dataloader_num_workers = dataloader_num_workers,
            dataloader_prefetch_factor = dataloader_prefetch_factor,
            past_index = past_index,
            run_name = run_name,
            disable_tqdm = disable_tqdm,
            remove_unused_columns = remove_unused_columns,
            label_names = label_names,
            load_best_model_at_end = load_best_model_at_end,
            metric_for_best_model = metric_for_best_model,
            greater_is_better = greater_is_better,
            ignore_data_skip = ignore_data_skip,
            fsdp = fsdp,
            fsdp_min_num_params = fsdp_min_num_params,
            fsdp_config = fsdp_config,
            fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
            accelerator_config = accelerator_config,
            parallelism_config = parallelism_config,
            deepspeed = deepspeed,
            label_smoothing_factor = label_smoothing_factor,
            optim = optim,
            optim_args = optim_args,
            adafactor = adafactor,
            group_by_length = group_by_length,
            length_column_name = length_column_name,
            report_to = report_to,
            ddp_find_unused_parameters = ddp_find_unused_parameters,
            ddp_bucket_cap_mb = ddp_bucket_cap_mb,
            ddp_broadcast_buffers = ddp_broadcast_buffers,
            dataloader_pin_memory = dataloader_pin_memory,
            dataloader_persistent_workers = dataloader_persistent_workers,
            skip_memory_metrics = skip_memory_metrics,
            use_legacy_prediction_loop = use_legacy_prediction_loop,
            push_to_hub = push_to_hub,
            resume_from_checkpoint = resume_from_checkpoint,
            hub_model_id = hub_model_id,
            hub_strategy = hub_strategy,
            hub_token = hub_token,
            hub_private_repo = hub_private_repo,
            hub_always_push = hub_always_push,
            hub_revision = hub_revision,
            gradient_checkpointing = gradient_checkpointing,
            gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
            include_inputs_for_metrics = include_inputs_for_metrics,
            eval_do_concat_batches = eval_do_concat_batches,
            fp16_backend = fp16_backend,
            push_to_hub_model_id = push_to_hub_model_id,
            push_to_hub_organization = push_to_hub_organization,
            push_to_hub_token = push_to_hub_token,
            mp_parameters = mp_parameters,
            auto_find_batch_size = auto_find_batch_size,
            full_determinism = full_determinism,
            torchdynamo = torchdynamo,
            ray_scope = ray_scope,
            ddp_timeout = ddp_timeout,
            torch_compile = torch_compile,
            torch_compile_backend = torch_compile_backend,
            torch_compile_mode = torch_compile_mode,
            include_tokens_per_second = include_tokens_per_second,
            include_num_input_tokens_seen = include_num_input_tokens_seen,
            neftune_noise_alpha = neftune_noise_alpha,
            optim_target_modules = optim_target_modules,
            batch_eval_metrics = batch_eval_metrics,
            eval_on_start = eval_on_start,
            use_liger_kernel = use_liger_kernel,
            liger_kernel_config = liger_kernel_config,
            eval_use_gather_object = eval_use_gather_object,
            average_tokens_across_devices = average_tokens_across_devices,
            reward_model_path = reward_model_path,
            judge = judge,
            max_new_tokens = max_new_tokens,
            max_length = max_length,
            temperature = temperature,
            top_p = top_p,
            top_k = top_k,
            min_p = min_p,
            repetition_penalty = repetition_penalty,
            generation_kwargs = generation_kwargs,
            use_transformers_paged = use_transformers_paged,
            cache_implementation = cache_implementation,
            missing_eos_penalty = missing_eos_penalty,
            loss_type = loss_type,
            disable_dropout = disable_dropout,
            use_vllm = use_vllm,
            vllm_model_impl = vllm_model_impl,
            vllm_guided_decoding_regex = vllm_guided_decoding_regex,
            vllm_gpu_memory_utilization = vllm_gpu_memory_utilization,
            vllm_mode = vllm_mode,
            vllm_server_base_url = vllm_server_base_url,
            vllm_server_host = vllm_server_host,
            vllm_server_port = vllm_server_port,
            vllm_server_timeout = vllm_server_timeout,
            vllm_tensor_parallel_size = vllm_tensor_parallel_size,
            ds3_gather_for_generation = ds3_gather_for_generation,
            model_init_kwargs = model_init_kwargs,
            reward_weights = reward_weights,
            dataset_num_proc = dataset_num_proc,
            gpu_memory_utilization = gpu_memory_utilization,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
        self.max_seq_length = max_seq_length
pass

class _UnslothOnlineDPOTrainer(Trainer):
    r""""""

    _tag_names = ["trl", "online-dpo"]

    def __init__(
        self,
        model: Union[PreTrainedModel, nn.Module, str],
        ref_model: Union[PreTrainedModel, nn.Module, None] = None,
        reward_funcs: Optional[Union[RewardFunc, list[RewardFunc]]] = None,
        judge: Optional[BasePairwiseJudge] = None,
        args: Optional[OnlineDPOConfig] = None,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
        eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
        processing_class: Optional[Union[PreTrainedTokenizerBase, ProcessorMixin]] = None,
        reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None,
        peft_config: Optional["PeftConfig"] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        # Deprecated parameters
        reward_model: Optional[Union[PreTrainedModel, nn.Module]] = None,
        reward_processing_class: Optional[PreTrainedTokenizerBase] = None,
    ) -> None:

        if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'):
            if (getattr(args, 'use_vllm', False) == False):
                args.use_vllm = True
        if ref_model is model:
            raise ValueError(
                "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
                "same as `model`, either omit the `ref_model` argument or pass `None`."
            )

        self.ref_model = ref_model

        # Handle deprecated parameters for backward compatibility
        if reward_model is not None:
            warnings.warn(
                "The `reward_model` parameter is deprecated and will be removed in version 0.25.0. "
                "Please use `reward_funcs` instead. For example, change `reward_model=model` to `reward_funcs=model`.",
            )
            # Convert old reward_model to new reward_funcs format
            if reward_funcs is None:
                reward_funcs = reward_model
            else:
                warnings.warn(
                    "Both `reward_model` and `reward_funcs` are provided. Using `reward_funcs` and ignoring "
                    "`reward_model`.",
                )

        if reward_processing_class is not None:
            warnings.warn(
                "The `reward_processing_class` parameter is deprecated and will be removed in version 0.25.0. "
                "Please use `reward_processing_classes` instead. For example, change "
                "`reward_processing_class=tokenizer` to `reward_processing_classes=tokenizer`.",
            )
            # Convert old reward_processing_class to new reward_processing_classes format
            if reward_processing_classes is None:
                reward_processing_classes = reward_processing_class
            else:
                warnings.warn(
                    "Both `reward_processing_class` and `reward_processing_classes` are provided. Using "
                    "`reward_processing_classes` and ignoring `reward_processing_class`.",
                )

        # Validate reward configuration - must have exactly one of: judge, or reward_funcs
        reward_configs = sum(x is not None for x in [judge, reward_funcs])
        if reward_configs == 0:
            raise ValueError("One of `judge` or `reward_funcs` must be provided.")
        elif reward_configs > 1:
            if judge is not None:
                logger.warning(
                    "Both `judge` and `reward_funcs` are provided. Using `judge` and ignoring `reward_funcs`.",
                    UserWarning,
                )
                reward_funcs = None
        self.judge = judge

        # Handle reward_funcs
        if reward_funcs is not None:
            if not isinstance(reward_funcs, list):
                reward_funcs = [reward_funcs]
            self.reward_func_names = []

            # Process reward functions [convert strings to models, collect names]
            model_init_kwargs = args.model_init_kwargs or {}
            for i, reward_func in enumerate(reward_funcs):
                if isinstance(reward_func, str):
                    # Load model from string path
                    reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained(
                        reward_func, num_labels=1, **model_init_kwargs
                    )
                if isinstance(reward_funcs[i], nn.Module):
                    self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1])
                else:
                    self.reward_func_names.append(reward_funcs[i].__name__)
            self.reward_funcs = reward_funcs

            # Handle reward processing classes for reward_funcs
            if reward_processing_classes is None:
                reward_processing_classes = [None] * len(reward_funcs)
            elif not isinstance(reward_processing_classes, list):
                reward_processing_classes = [reward_processing_classes]
            else:
                if len(reward_processing_classes) != len(reward_funcs):
                    raise ValueError(
                        "The number of reward processing classes must match the number of reward functions."
                    )

            self.reward_processing_classes = []
            for reward_processing_class_i, reward_func in zip(reward_processing_classes, reward_funcs):
                if isinstance(reward_func, PreTrainedModel):
                    if reward_processing_class_i is None:
                        reward_processing_class_i = AutoTokenizer.from_pretrained(reward_func.config._name_or_path)
                    if reward_processing_class_i.pad_token_id is None:
                        reward_processing_class_i.pad_token = reward_processing_class_i.eos_token
                    # Set pad token ID on reward model config
                    reward_func.config.pad_token_id = reward_processing_class_i.pad_token_id
                self.reward_processing_classes.append(reward_processing_class_i)
        else:
            self.reward_funcs = None
            self.reward_func_names = []
            self.reward_processing_classes = []

        # Handle reward_weights
        if reward_funcs is not None:
            if args.reward_weights is not None:
                if len(args.reward_weights) != len(self.reward_funcs):
                    raise ValueError(
                        f"Number of reward weights ({len(args.reward_weights)}) must match number of reward "
                        f"functions ({len(self.reward_funcs)})"
                    )
                self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
            else:
                self.reward_weights = torch.ones(len(self.reward_funcs), dtype=torch.float32)
        else:
            self.reward_weights = None

        if args.missing_eos_penalty is not None and reward_funcs is None and judge is None:
            # Check if this is the old reward_model case
            if reward_model is not None:
                logger.warning(
                    "The `missing_eos_penalty` parameter is deprecated when used with the deprecated `reward_model` parameter. "
                    "Please use `reward_funcs` instead of `reward_model` to continue using this feature.",
                    DeprecationWarning,
                    stacklevel=2,
                )
            else:
                raise ValueError("`missing_eos_penalty` is only supported when `reward_funcs` is provided.")

        if args is None:
            raise ValueError("`args` must be provided.")

        # Check that the processing_class is provided
        if processing_class is None:
            raise ValueError("`processing_class` must be provided.")

        model_init_kwargs = args.model_init_kwargs or {}
        if isinstance(model, str):
            model_id = model

            # Handle dtype in model_init_kwargs
            dtype = model_init_kwargs.get("dtype")
            if isinstance(dtype, torch.dtype) or dtype == "auto" or dtype is None:
                pass
            elif isinstance(dtype, str):
                dtype = getattr(torch, dtype)
                model_init_kwargs["dtype"] = dtype
            else:
                raise ValueError(
                    "Invalid `dtype` passed to `OnlineDPOConfig`. Expected either 'auto' or a string "
                    f"representing a `torch.dtype` (e.g., 'float32'), but got {dtype}."
                )

            model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs)
        else:
            if args.model_init_kwargs is not None:
                raise ValueError(
                    "You passed `model_init_kwargs` to the `OnlineDPOConfig`, but your model is already instantiated. "
                    "This argument can only be used when the `model` argument is a string."
                )
        self.is_encoder_decoder = model.config.is_encoder_decoder
        self.is_vision_model = model.config.model_type in MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.keys()

        if False:
            model = prepare_peft_model(model, peft_config, args)

        # Enable gradient checkpointing if requested
        if args.gradient_checkpointing:
            model = self._enable_gradient_checkpointing(model, args)

        # Disable dropout in the model and reference model
        if args.disable_dropout:
            disable_dropout_in_model(model)
            if self.ref_model is not None:
                disable_dropout_in_model(self.ref_model)

        # Handle the ref_model
        # Usually, the user wants the ref model to be the initial version of the model. When using PEFT, it's easy to
        # get the ref model, as it's just the model with a disabled adapter. When not using PEFT, we need to create
        # the ref model from the model by copying it and disable the gradients and set it in evaluation mode.
        if ref_model is None:  # No ref model provided, the most common case
            if False:
                self.ref_model = create_reference_model(model)  # copy, disable gradients, set eval mode
            else:
                self.ref_model = None  # we don't need a ref model here, we can just disable the adapter.
        else:  # rare case, the user provided a ref model
            self.ref_model = ref_model
            self.ref_model.eval()

        # Disable the gradient and set the reward model in eval mode
        if reward_funcs is not None:
            for reward_func in reward_funcs:
                if isinstance(reward_func, PreTrainedModel):
                    reward_func.eval()

        self.max_length = args.max_length

        self.stats = {
            "objective/kl": [],
            "objective/entropy": [],
            "objective/non_score_reward": [],
            "rewards/chosen": [],
            "rewards/rejected": [],
            "rewards/accuracies": [],
            "rewards/margins": [],
            "logps/chosen": [],
            "logps/rejected": [],
            "val/contain_eos_token": [],
            "beta": [],
        }
        if self.reward_funcs is not None:
            self.stats["objective/rlhf_reward"] = []
            self.stats["objective/scores_margin"] = []
            self.stats["objective/scores"] = []

        # Store generation parameters for later use
        self.use_vllm = args.use_vllm
        self.num_generations = 2  # Generate 2 completions per prompt for Online DPO
        self.temperature = args.temperature
        self.top_p = args.top_p
        self.top_k = args.top_k
        self.min_p = args.min_p
        self.repetition_penalty = args.repetition_penalty
        self.use_transformers_paged = args.use_transformers_paged
        self.vllm_mode = args.vllm_mode if args.use_vllm else None
        self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization
        self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size
        self.vllm_model_impl = args.vllm_model_impl

        # Handle pad token for processors or tokenizers
        if isinstance(processing_class, ProcessorMixin):
            tokenizer = processing_class.tokenizer
        elif isinstance(processing_class, PreTrainedTokenizerBase):
            tokenizer = processing_class
        else:
            raise TypeError("The `processing_class` must be either a `PreTrainedTokenizerBase` or a `ProcessorMixin`")

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        self.pad_token = tokenizer.pad_token
        self.pad_token_id = tokenizer.pad_token_id
        self.eos_token_id = tokenizer.eos_token_id

        # Vision tokens for VLM support
        self.image_token_id = getattr(processing_class, "image_token_id", None)
        self.vision_start_token_id = getattr(processing_class, "vision_start_token_id", None)
        self.vision_end_token_id = getattr(processing_class, "vision_end_token_id", None)
        # Get the image token string for token collapsing
        self.image_token = None
        if self.image_token_id is not None:
            self.image_token = tokenizer.decode([self.image_token_id])

        # Define the collator if not provided
        if data_collator is None:
            data_collator = DPODataCollatorWithPadding(pad_token_id=self.pad_token_id)

        # The trainer estimates the number of FLOPs [floating-point operations] using the number of elements in the
        # input tensor associated with the key "input_ids". However, in Online DPO, the sampled data does not include
        # the "input_ids" key. As a result, the trainer issues the warning: "Could not estimate the number of tokens
        # of the input, floating-point operations will not be computed." To suppress this warning, we set the
        # "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate
        # that the warning has already been issued.
        model.warnings_issued["estimate_tokens"] = True

        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        )

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

        self._beta = args.beta

        # Set up generation configuration and vLLM after super[].__init__
        if self.use_vllm:
            if not is_vllm_available():
                raise ImportError(
                    "vLLM is not available and `use_vllm` is set to True. Please install vLLM with "
                    "`pip install vllm` to use it."
                )

            if self.vllm_mode == "server":
                if self.accelerator.is_main_process:
                    if args.vllm_server_base_url is not None:
                        base_url = args.vllm_server_base_url
                    else:
                        base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}"
                    self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout)
                    self.vllm_client.init_communicator(device=torch.cuda.current_device())
                else:
                    self.vllm_client = None
            elif self.vllm_mode == "colocate":
                vllm_kwargs = {
                    "model": model.name_or_path,
                    "tensor_parallel_size": self.vllm_tensor_parallel_size,
                    "gpu_memory_utilization": self.vllm_gpu_memory_utilization,
                    "model_impl": self.vllm_model_impl,
                    "max_num_seqs": self.args.per_device_train_batch_size * self.vllm_tensor_parallel_size,
                    "max_model_len": args.max_length + args.max_new_tokens,
                    "distributed_executor_backend": "external_launcher",
                    "seed": self.accelerator.process_index // self.vllm_tensor_parallel_size,
                    "max_num_batched_tokens": 4096,
                }
                os.environ["RANK"] = str(self.accelerator.process_index)
                os.environ["LOCAL_RANK"] = str(self.accelerator.local_process_index)
                os.environ["WORLD_SIZE"] = str(self.accelerator.num_processes)
                os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "localhost")
                os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "12345")

                self.llm = model.vllm_engine
            else:
                raise ValueError(f"vllm_mode must be either 'server' or 'colocate', got '{self.vllm_mode}'.")
            self.guided_decoding_regex = args.vllm_guided_decoding_regex
            self._last_loaded_step = -1
            generation_params = {
                "n": 2,
                "repetition_penalty": self.repetition_penalty,
                "temperature": self.temperature,
                "top_p": self.top_p,
                "top_k": -1 if self.top_k is None else self.top_k,
                "min_p": 0.0 if self.min_p is None else self.min_p,
                "max_tokens": args.max_new_tokens,
                "detokenize": False,
            }
            if args.generation_kwargs is not None:
                generation_params.update(args.generation_kwargs)
            if self.guided_decoding_regex:
                generation_params["guided_decoding"] = GuidedDecodingParams(regex=self.guided_decoding_regex)
            self.generation_config = SamplingParams(**generation_params)
            self.accelerator.wait_for_everyone()
        else:
            # Set up transformers generation config
            generation_kwargs = {
                "max_new_tokens": args.max_new_tokens,
                "do_sample": True,
                "pad_token_id": self.pad_token_id,
                "bos_token_id": tokenizer.bos_token_id,
                "eos_token_id": self.eos_token_id,
                "temperature": self.temperature,
                "top_k": self.top_k,
                "top_p": self.top_p,
                "repetition_penalty": self.repetition_penalty,
                "use_cache": True if not self.args.gradient_checkpointing else False,
            }
            # Add min_p if supported
            if self.min_p is not None:
                generation_kwargs["min_p"] = self.min_p
            if args.generation_kwargs is not None:
                generation_kwargs.update(args.generation_kwargs)
            if self.use_transformers_paged:
                generation_kwargs["max_batch_tokens"] = 512
                generation_kwargs["num_blocks"] = 1024
                generation_kwargs["block_size"] = 128
            # Remove None values
            generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None}
            self.generation_config = GenerationConfig(**generation_kwargs)

        if self.is_deepspeed_enabled:
            if self.ref_model is not None:
                self.ref_model = prepare_deepspeed(
                    self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
                )
            # Prepare reward function models for DeepSpeed
            if self.reward_funcs is not None:
                for i, reward_func in enumerate(self.reward_funcs):
                    if isinstance(reward_func, PreTrainedModel):
                        self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
        else:
            if self.ref_model is not None:
                self.ref_model = self.ref_model.to(self.accelerator.device)
            # Prepare reward function models for FSDP/regular training
            if self.reward_funcs is not None:
                for i, reward_func in enumerate(self.reward_funcs):
                    if isinstance(reward_func, PreTrainedModel):
                        # Set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
                        self.reward_funcs[i] = self.accelerator.prepare_model(
                            reward_func, evaluation_mode=True, device_placement=True
                        )

    @property
    def beta(self):
        if isinstance(self._beta, list):
            epoch = self.state.epoch
            return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1]
        else:
            return self._beta

    @staticmethod
    def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]:
        """Tokenize a single row from a DPO specific dataset."""
        if not is_encoder_decoder:
            batch = tokenizer(feature["prompt"], add_special_tokens=False)
            # Add BOS token to head of prompt. Avoid adding if it's already there
            if tokenizer.bos_token_id is not None:
                prompt_len_input_ids = len(batch["input_ids"])
                if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]:
                    batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"]
                    batch["attention_mask"] = [1] + batch["attention_mask"]
        else:
            batch = tokenizer(feature["prompt"], add_special_tokens=True)
        batch = {f"prompt_{key}": value for key, value in batch.items()}
        return batch

    # Same as Trainer.get_train_dataloader but skip the "remove_unused_columns".
    @wraps(Trainer.get_train_dataloader)
    def get_train_dataloader(self) -> DataLoader:
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")

        train_dataset = self.train_dataset
        data_collator = self.data_collator
        dataloader_params = {
            "batch_size": self._train_batch_size,
            "collate_fn": data_collator,
            "num_workers": self.args.dataloader_num_workers,
            "pin_memory": self.args.dataloader_pin_memory,
            "persistent_workers": self.args.dataloader_persistent_workers,
        }

        if not isinstance(train_dataset, torch.utils.data.IterableDataset):
            dataloader_params["sampler"] = self._get_train_sampler()
            dataloader_params["drop_last"] = self.args.dataloader_drop_last
            dataloader_params["worker_init_fn"] = seed_worker
            dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor

        return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))

    # Same as Trainer.get_eval_dataloader but skip the "remove_unused_columns".
    @wraps(Trainer.get_eval_dataloader)
    def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader:
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")

        # If we have persistent workers, don't do a fork bomb especially as eval datasets
        # don't change during training
        dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval"
        if (
            hasattr(self, "_eval_dataloaders")
            and dataloader_key in self._eval_dataloaders
            and self.args.dataloader_persistent_workers
        ):
            return self.accelerator.prepare(self._eval_dataloaders[dataloader_key])

        eval_dataset = (
            self.eval_dataset[eval_dataset]
            if isinstance(eval_dataset, str)
            else eval_dataset
            if eval_dataset is not None
            else self.eval_dataset
        )
        data_collator = self.data_collator

        dataloader_params = {
            "batch_size": self.args.eval_batch_size,
            "collate_fn": data_collator,
            "num_workers": self.args.dataloader_num_workers,
            "pin_memory": self.args.dataloader_pin_memory,
            "persistent_workers": self.args.dataloader_persistent_workers,
        }

        if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
            dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset)
            dataloader_params["drop_last"] = self.args.dataloader_drop_last
            dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor

        # accelerator.free_memory() will destroy the references, so
        # we need to store the non-prepared version
        eval_dataloader = DataLoader(eval_dataset, **dataloader_params)
        if self.args.dataloader_persistent_workers:
            if hasattr(self, "_eval_dataloaders"):
                self._eval_dataloaders[dataloader_key] = eval_dataloader
            else:
                self._eval_dataloaders = {dataloader_key: eval_dataloader}

        return self.accelerator.prepare(eval_dataloader)

    def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: OnlineDPOConfig) -> PreTrainedModel:
        """Enables gradient checkpointing for the model."""
        # Ensure use_cache is disabled
        model.config.use_cache = False

        # Enable gradient checkpointing on the base model for PEFT
        if is_peft_model(model):
            model.base_model.gradient_checkpointing_enable()
        # Enable gradient checkpointing for non-PEFT models
        else:
            model.gradient_checkpointing_enable()

        gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {}
        use_reentrant = (
            "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]
        )

        if use_reentrant:
            model.enable_input_require_grads()

        return model

    def _generate_vllm(self, prompts, images=None):
        eos_token_id = self.eos_token_id
        pad_token_id = self.pad_token_id

        # Generate completion_ids and prompt_ids based on mode
        if self.vllm_mode == "server":
            completion_ids, prompt_ids = self._generate_vllm_server(prompts, images)
        elif self.vllm_mode == "colocate":
            completion_ids, prompt_ids = self._generate_vllm_colocate(prompts, images)

        # Shared padding, masking, and tensor conversion logic
        max_prompt_length = max(len(ids) for ids in prompt_ids)
        prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids]
        prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids]
        max_tokens = self.generation_config.max_tokens
        completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids]
        completion_ids = [
            ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids
            for ids in completion_ids
        ]
        completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids]

        # Convert to tensors
        prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device)
        prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device)
        completion_ids = torch.tensor(completion_ids, device=self.accelerator.device)
        completion_mask = torch.tensor(completion_mask, device=self.accelerator.device)

        return prompt_ids, prompt_mask, completion_ids, completion_mask

    def _generate_vllm_server(self, prompts, images=None):
        """Generate completions using vLLM server mode"""
        has_images = images is not None

        # Update vLLM server weights if needed
        if hasattr(self, "_last_loaded_step") and self.state.global_step != self._last_loaded_step:
            self._move_model_to_vllm()
            self._last_loaded_step = self.state.global_step
        elif not hasattr(self, "_last_loaded_step"):
            self._move_model_to_vllm()
            self._last_loaded_step = self.state.global_step

        # Apply chat template if conversational
        if is_conversational({"prompt": prompts[0]}):
            prompts_text = [apply_chat_template({"prompt": p}, self.processing_class)["prompt"] for p in prompts]
        else:
            prompts_text = prompts
        # Gather all prompts to main process
        all_prompts = gather_object(prompts_text)
        if has_images:
            all_images = gather_object(images)

        if self.accelerator.is_main_process:
            # Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate
            # num_generations outputs for each one. This is faster than generating outputs for each duplicate
            # prompt individually.
            ordered_set_of_prompts = all_prompts[:: self.num_generations]
            if has_images:
                ordered_set_of_images = all_images[:: self.num_generations]
            else:
                ordered_set_of_images = None
            completion_ids = self.vllm_client.generate(
                prompts=ordered_set_of_prompts,
                images=ordered_set_of_images,
                n=self.num_generations,
                repetition_penalty=self.repetition_penalty,
                temperature=self.temperature,
                top_p=self.top_p,
                top_k=-1 if self.top_k is None else self.top_k,
                min_p=0.0 if self.min_p is None else self.min_p,
                max_tokens=self.generation_config.max_tokens,
                guided_decoding_regex=self.guided_decoding_regex if hasattr(self, "guided_decoding_regex") else None,
                generation_kwargs=self.args.generation_kwargs,
            )
            # Flatten: each prompt generates 2 completions
            completion_ids = [[comp_id] for prompt_completions in completion_ids for comp_id in prompt_completions]
        else:
            completion_ids = [None] * (len(all_prompts) * 2)

        # Broadcast completions to all processes
        completion_ids = broadcast_object_list(completion_ids, from_process=0)

        # Each process takes its slice
        process_slice = slice(
            self.accelerator.process_index * len(prompts) * 2,
            (self.accelerator.process_index + 1) * len(prompts) * 2,
        )
        completion_ids = completion_ids[process_slice]

        # Create prompt_ids by tokenizing locally
        prompt_inputs = self.processing_class(
            text=prompts_text,
            return_tensors="pt",
            padding=True,
            padding_side="left",
            add_special_tokens=False,
        )
        prompt_ids = []
        for prompt_tokens in prompt_inputs["input_ids"]:
            prompt_ids.extend([prompt_tokens.tolist(), prompt_tokens.tolist()])  # 2 copies for 2 completions
        return completion_ids, prompt_ids

    def _generate_vllm_colocate(self, prompts, images=None):
        """Generate completions using vLLM colocate mode"""
        # Update model weights if needed
        self._move_model_to_vllm()

        # Apply chat template if conversational
        if is_conversational({"prompt": prompts[0]}):
            prompts_text = [apply_chat_template({"prompt": p}, self.processing_class)["prompt"] for p in prompts]
        else:
            prompts_text = prompts

        # Prepare vLLM inputs with images if available
        if images is not None:
            vllm_inputs = []
            for prompt, image in zip(prompts_text, images):
                if image is not None:
                    vllm_inputs.append({"prompt": prompt, "multi_modal_data": {"image": image}})
                else:
                    vllm_inputs.append(prompt)
        else:
            vllm_inputs = prompts_text

        outputs = self.llm.generate(vllm_inputs, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True))

        completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs]
        prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs]

        return completion_ids, prompt_ids

    def _move_model_to_vllm(self):
        """Synchronize model weights to vLLM server with support for PEFT, DeepSpeed, and FSDP"""
        # For DeepSpeed ZeRO-3 and FSDP, we need to gather all parameters before operations
        deepspeed_plugin = self.accelerator.state.deepspeed_plugin
        zero_stage_3 = deepspeed_plugin is not None and deepspeed_plugin.zero_stage == 3
        if zero_stage_3:
            import deepspeed

            gather_if_zero3 = deepspeed.zero.GatheredParameters
        else:
            gather_if_zero3 = nullcontext

        if is_peft_model(self.model):
            # With PEFT and FSDP/DeepSpeed ZeRO Stage 3, we must gather the full model at once before merging, as
            # merging adapters in a sharded manner is not supported.
            # TODO: does this work with FSDP?
            with gather_if_zero3(list(self.model.parameters())):
                self.model.merge_adapter()

                # Update vLLM weights while parameters are gathered
                if self.is_fsdp_enabled:  # note if using FSDP, gather_if_zero3 is nullcontext
                    # Update vLLM weights while parameters are gathered
                    # For PEFT with FSDP we need to use the memory efficient post-order traversal
                    fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None)
                    fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1
                    if fsdp_version == 1:
                        # use memory-efficient post-order traversal for FSDP
                        self._sync_fsdp1_params_to_vllm(self.model)
                    elif fsdp_version == 2:
                        self._sync_fsdp2_params_to_vllm(self.model)
                else:
                    # DeepSpeed ZeRO-3 with PEFT
                    for name, param in self.model.named_parameters():
                        # When using PEFT, we need to recover the original parameter name and discard some parameters
                        name = name.removeprefix("base_model.model.").replace(".base_layer", "")
                        if self.model.prefix in name:
                            continue
                        # When module to save, remove its prefix and discard the original module
                        if "original_module" in name:
                            continue
                        name = self._fix_param_name_to_vllm(name, extra_prefixes=["modules_to_save.default."])

                        if self.vllm_mode == "server" and self.accelerator.is_main_process:
                            self.vllm_client.update_named_param(name, param.data)
                        elif self.vllm_mode == "colocate":

                            pass

                            pass
                # Unmerge adapters while parameters are still gathered
                self.model.unmerge_adapter()
                # Parameters will automatically be repartitioned when exiting the context
        else:
            # For non-PEFT models, simply gather (if needed) and update each parameter individually.
            if self.is_fsdp_enabled:
                fsdp_plugin = getattr(self.accelerator.state, "fsdp_plugin", None)
                fsdp_version = getattr(fsdp_plugin, "fsdp_version", 1) if fsdp_plugin else 1
                if fsdp_version == 1:
                    self._sync_fsdp1_params_to_vllm(self.model)  # use memory-efficient post-order traversal for FSDP
                elif fsdp_version == 2:
                    self._sync_fsdp2_params_to_vllm(self.model)
            else:
                for name, param in self.model.named_parameters():
                    name = self._fix_param_name_to_vllm(name)
                    with gather_if_zero3([param]):
                        if self.vllm_mode == "server" and self.accelerator.is_main_process:
                            self.vllm_client.update_named_param(name, param.data)
                        elif self.vllm_mode == "colocate":

                            pass

                            pass

        # Reset cache on vLLM
        if self.vllm_mode == "server" and self.accelerator.is_main_process:
            self.vllm_client.reset_prefix_cache()
        elif self.vllm_mode == "colocate":
            self.llm.reset_prefix_cache()

    def _sync_fsdp1_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None):
        """Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM."""
        # For FSDP1, we need to recurse into children and also use summon_full_params
        if visited is None:
            visited = set()
        for child_name, child_module in module.named_children():
            child_prefix = f"{prefix}.{child_name}" if prefix else child_name
            self._sync_fsdp1_params_to_vllm(
                child_module, prefix=child_prefix, visited=visited
            )  # recurse into the child

        if isinstance(module, FSDP):
            with FSDP.summon_full_params(module, recurse=False, writeback=False):
                for param_name, param in module.named_parameters():
                    full_name = f"{prefix}.{param_name}" if prefix else param_name
                    full_name = self._fix_param_name_to_vllm(full_name, extra_prefixes=["_fsdp_wrapped_module."])

                    if full_name in visited:
                        continue  # skip FSDP subtrees already traversed
                    visited.add(full_name)

                    if self.vllm_mode == "server" and self.accelerator.is_main_process:
                        self.vllm_client.update_named_param(full_name, param.data)
                    elif self.vllm_mode == "colocate":

                        pass

                        pass

    def _sync_fsdp2_params_to_vllm(self, module: nn.Module):
        # For FSDP2, module already covers all parameters, so no need for recursion
        for name, param in module.items():
            if param.is_cpu:
                param = param.to(torch.device("cuda"))
            param = param.full_tensor()

            if self.vllm_mode == "server" and self.accelerator.is_main_process:
                self.vllm_client.update_named_param(name, param)
            elif self.vllm_mode == "colocate":

                pass

                pass

    def _fix_param_name_to_vllm(self, name, extra_prefixes: Optional[list[str]] = None):
        """Clean parameter names for vLLM compatibility"""
        extra_prefixes = extra_prefixes or []
        prefixes = ["_checkpoint_wrapped_module."] + extra_prefixes
        for prefix in prefixes:
            name = name.replace(prefix, "")
        return name

    def process_vision_row(
        self, features: dict[str, Union[list, torch.Tensor]], processing_class=None
    ) -> dict[str, list[int]]:
        """
        Process a vision row for VLM models (adapted from DPO trainer)
        """
        processor = processing_class or self.processing_class
        processed_features = processor(images=[features["image"]], text=features["prompt"], add_special_tokens=False)

        prompt_input_ids = processed_features["input_ids"][0]

        # Create the output dict with required fields
        output = {
            "prompt_input_ids": prompt_input_ids,
            "prompt_attention_mask": processed_features["attention_mask"][0],
        }

        # Add vision-specific fields
        if "pixel_values" in processed_features:
            output["pixel_values"] = processed_features["pixel_values"][0]
        if "pixel_attention_mask" in processed_features:
            output["pixel_attention_mask"] = processed_features["pixel_attention_mask"][0]
        if "image_sizes" in processed_features:
            output["image_sizes"] = processed_features["image_sizes"][0]

        return output

    def _generate(self, model, prompts, images=None):
        """Generate completions using the model"""
        device = next(model.parameters()).device
        eos_token_id = self.eos_token_id
        pad_token_id = self.pad_token_id

        # Apply chat template and tokenize the input
        inputs = [{"prompt": prompt} for prompt in prompts]

        # Add images if provided (VLM support)
        if images is not None:
            for i, image in enumerate(images):
                inputs[i]["image"] = image

        # Apply chat template to get text prompts
        prompts_text = [maybe_apply_chat_template(x, self.processing_class)["prompt"] for x in inputs]

        # Handle image token collapsing/removal
        # The chat template sometimes inserts a single image token into the prompt text. However, when this text is
        # later tokenized, the single image token string is expanded into multiple image token IDs, depending on the
        # image size. We need to handle this properly.
        if self.image_token is not None and images is not None:
            escaped_img_token = re.escape(self.image_token)
            # Search for the image token in the chat template
            if hasattr(self.processing_class, "chat_template") and self.processing_class.chat_template:
                if re.search(escaped_img_token, self.processing_class.chat_template):
                    # Collapse repeated image tokens back into a single token
                    prompts_text = [
                        re.sub(rf"({escaped_img_token})+", self.image_token, text) for text in prompts_text
                    ]
                else:
                    # If the chat template doesn't use the image token, remove all instances
                    if self.vision_end_token_id is not None:
                        escaped_eoi_token = re.escape(
                            self.processing_class.tokenizer.decode([self.vision_end_token_id])
                        )
                        prompts_text = [
                            re.sub(rf"({escaped_img_token})+{escaped_eoi_token}", "", text) for text in prompts_text
                        ]
                    else:
                        # If vision_end_token_id is None, just remove the image tokens
                        prompts_text = [re.sub(rf"({escaped_img_token})+", "", text) for text in prompts_text]

        # Prepare kwargs for processing class
        kwargs = {}
        if images is not None:
            kwargs = {"images": [[img] for img in images]}

        # Process inputs using the processing class (handles both VLM and LLM)
        prompt_inputs = self.processing_class(
            text=prompts_text,
            return_tensors="pt",
            padding=True,
            padding_side="left",
            add_special_tokens=False,
            **kwargs,
        )

        prompt_inputs = {k: v.to(device) for k, v in prompt_inputs.items()}
        # Convert vision inputs to model's dtype for proper computation
        if "pixel_values" in prompt_inputs:
            # Handle DataParallel wrapped models
            model_dtype = getattr(model, "dtype", None)
            if model_dtype is None and hasattr(model, "module"):
                model_dtype = model.module.dtype
            if model_dtype is not None:
                prompt_inputs["pixel_values"] = prompt_inputs["pixel_values"].to(model_dtype)

        # Sample 2 completions per prompt of size `max_new_tokens` from the model
        prompt_ids = prompt_inputs["input_ids"].repeat(2, 1)
        prompt_mask = prompt_inputs["attention_mask"].repeat(2, 1)

        # Prepare vision inputs if available
        vision_generation_kwargs = {}
        if self.is_vision_model and images is not None:
            if "pixel_values" in prompt_inputs:
                vision_generation_kwargs["pixel_values"] = prompt_inputs["pixel_values"].repeat(2, 1, 1, 1)
            if "pixel_attention_mask" in prompt_inputs:
                vision_generation_kwargs["pixel_attention_mask"] = prompt_inputs["pixel_attention_mask"].repeat(2, 1)
            if "image_sizes" in prompt_inputs:
                vision_generation_kwargs["image_sizes"] = prompt_inputs["image_sizes"].repeat(2, 1)
            if "image_grid_thw" in prompt_inputs:
                vision_generation_kwargs["image_grid_thw"] = prompt_inputs["image_grid_thw"].repeat(2, 1)

        if self.use_transformers_paged:
            previous_attn = self.model_wrapped.config._attn_implementation

            if is_flash_attn_2_available():
                self.model_wrapped.config._attn_implementation = "paged_attention"
            else:
                self.model_wrapped.config._attn_implementation = "sdpa_paged"
            with (
                profiling_context(self, "transformers.generate_batch"),
                unwrap_model_for_generation(
                    model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
                ) as unwrapped_model,
                torch.no_grad(),
                FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
            ):
                # Cast to the appropriate dtype based on training configuration
                if self.args.bf16:
                    unwrapped_model.to(torch.bfloat16)
                elif self.args.fp16:
                    unwrapped_model.to(torch.float16)
                with torch.inference_mode():
                    all_outputs = unwrapped_model.generate_batch(
                        prompt_ids.tolist(),
                        generation_config=self.generation_config,
                        progress_bar=False,
                    )
            completion_ids = [output.generated_tokens for output in all_outputs.values()]
            completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
            completion_ids = pad(completion_ids, padding_value=self.pad_token_id, padding_side="right")
            prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)
            # Restore the original attention implementation, training mode
            self.model_wrapped.config._attn_implementation = previous_attn

            # Extract completion_ids and create completion_mask
            prompt_length = prompt_ids.size(1)
            completion_ids = prompt_completion_ids[:, prompt_length:]
            completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id)

            return prompt_ids, prompt_mask, completion_ids, completion_mask
        else:
            # Regular generation path
            with (
                profiling_context(self, "transformers.generate"),
                unwrap_model_for_generation(
                    model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
                ) as unwrapped_model,
                torch.no_grad(),
                FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
            ):
                # Setup cache implementation if specified
                if self.args.cache_implementation is not None:
                    unwrapped_model.generation_config.cache_implementation = self.args.cache_implementation

                # Standard generation
                output = unwrapped_model.generate(
                    input_ids=prompt_ids,
                    attention_mask=prompt_mask,
                    generation_config=self.generation_config,
                    **vision_generation_kwargs,
                )

            completion_ids = output[:, prompt_ids.size(1) :]
            completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id)

            return prompt_ids, prompt_mask, completion_ids, completion_mask

    def _calculate_rewards_from_functions(self, prompts, completions, completion_ids_list, **reward_kwargs):
        """
        Calculate rewards using reward functions
        """
        device = self.accelerator.device
        rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)

        # Add trainer state to reward kwargs for dynamic reward shaping
        reward_kwargs["trainer_state"] = self.state

        for i, (reward_func, reward_processing_class) in enumerate(
            zip(self.reward_funcs, self.reward_processing_classes)
        ):
            if isinstance(reward_func, nn.Module):  # Model-based reward function
                # Handle conversational vs text input
                if is_conversational({"prompt": prompts[0]}):
                    messages = [{"messages": p + c} for p, c in zip(prompts, completions)]
                    texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages]
                else:
                    texts = [p + c for p, c in zip(prompts, completions)]

                # Tokenize and get reward scores
                reward_inputs = reward_processing_class(
                    text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False
                )
                reward_inputs = {k: v.to(device) for k, v in reward_inputs.items()}

                with torch.inference_mode():
                    rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0]  # Shape (B*G,)
            else:
                # Custom reward function
                output_reward_func = reward_func(
                    prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs
                )
                # Convert None values to NaN
                output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func]
                rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)

        # Weight and sum across all reward functions
        if self.reward_weights is not None:
            total_rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)
        else:
            total_rewards = rewards_per_func.nansum(dim=1)

        return total_rewards

    def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs=None):
        # Get the number of tokens to truncate from prompt
        num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0)

        # Truncate left to avoid oom
        prompt_ids = prompt_ids[:, num_tokens_to_truncate:]
        prompt_mask = prompt_mask[:, num_tokens_to_truncate:]

        # Concat the prompt and completion
        prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1)
        prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1)

        # Prepare model kwargs with vision inputs if available
        model_kwargs = {"attention_mask": prompt_completion_mask}
        if vision_inputs is not None:
            if "pixel_values" in vision_inputs:
                model_kwargs["pixel_values"] = vision_inputs["pixel_values"]
            if "pixel_attention_mask" in vision_inputs:
                model_kwargs["pixel_attention_mask"] = vision_inputs["pixel_attention_mask"]
            if "image_sizes" in vision_inputs:
                model_kwargs["image_sizes"] = vision_inputs["image_sizes"]
            if "image_grid_thw" in vision_inputs:
                model_kwargs["image_grid_thw"] = vision_inputs["image_grid_thw"]

        # Get the logprobs of the completions from the model
        output = model(prompt_completion_ids, **model_kwargs)

        # There is 1 offset, because the model predict the next token
        prompt_len = prompt_ids.size(1)
        start_idx = prompt_len - 1 if prompt_len > 0 else 0
        logits = output.logits[:, start_idx:-1]

        # Take the completion tokens logprob
        logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1)
        return logprobs

    def training_step(
        self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
    ) -> torch.Tensor:
        model.train()

        prompts = inputs["prompt"]
        batch_size = len(prompts)

        # Handle images for VLM support
        has_images = "image" in inputs
        images = None
        if has_images:
            images = inputs["image"]
            # Convert conversational prompts to include image tokens
            for prompt in prompts:
                if isinstance(prompt, list):
                    for message in prompt:
                        if not isinstance(message, dict):
                            continue
                        content = message.get("content")
                        role = message.get("role")
                        if isinstance(content, str):
                            if role == "user":
                                message["content"] = [{"type": "image"}, {"type": "text", "text": content}]
                            elif role == "system":
                                message["content"] = [{"type": "text", "text": content}]

        if self.args.use_vllm:
            prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(prompts, images)
        else:
            prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts, images)

        contain_eos_token = torch.any(completion_ids == self.eos_token_id, dim=-1)

        # Extract vision inputs if available for VLM support
        vision_inputs = None
        if has_images and self.is_vision_model and not self.args.use_vllm:
            # For vision models with transformers generation, we need to prepare vision inputs
            # Process the images to get vision inputs that can be passed through the forward pass
            vision_inputs = {}
            kwargs = {"images": [[img] for img in images]}
            processed = self.processing_class(
                text=[""] * len(images),  # Dummy text for vision processing
                return_tensors="pt",
                **kwargs,
            )
            # Handle DataParallel wrapped models
            model_device = getattr(model, "device", None)
            model_dtype = getattr(model, "dtype", None)
            if model_device is None and hasattr(model, "module"):
                model_device = model.module.device
                model_dtype = model.module.dtype
            # Move vision tensors to device and convert to model dtype
            # Need to duplicate for 2 completions per prompt
            if "pixel_values" in processed:
                vision_inputs["pixel_values"] = (
                    processed["pixel_values"].to(model_device, dtype=model_dtype).repeat(2, 1, 1, 1)
                )
            if "pixel_attention_mask" in processed:
                vision_inputs["pixel_attention_mask"] = processed["pixel_attention_mask"].to(model_device).repeat(2, 1)
            if "image_sizes" in processed:
                vision_inputs["image_sizes"] = processed["image_sizes"].to(model_device).repeat(2, 1)
            if "image_grid_thw" in processed:
                vision_inputs["image_grid_thw"] = processed["image_grid_thw"].to(model_device).repeat(2, 1)

        logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs)
        with torch.no_grad():
            if self.ref_model is not None:
                ref_logprobs = self._forward(
                    self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs
                )
            else:  # peft case: we just need to disable the adapter
                with self.model.disable_adapter():
                    ref_logprobs = self._forward(
                        self.model, prompt_ids, prompt_mask, completion_ids, completion_mask, vision_inputs
                    )

        # Decode the completions, and format them if the input is conversational
        device = logprobs.device
        completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
        if is_conversational({"prompt": prompts[0]}):
            completions = [[{"role": "assistant", "content": completion}] for completion in completions]

        # Get the reward from reward functions, judge, or deprecated reward_model
        if self.reward_funcs is not None:
            # First create completion_ids_list for custom reward functions
            completion_ids_list = [completion_ids[i].tolist() for i in range(completion_ids.shape[0])]

            # Extract additional fields from inputs for reward functions
            reward_kwargs = {}
            keys = [key for key in inputs if key not in ["prompt"]]
            for key in keys:
                if isinstance(inputs[key], (list, tuple)):
                    # Repeat input fields to match number of completions (2 per prompt)
                    reward_kwargs[key] = inputs[key] * 2
                else:
                    reward_kwargs[key] = inputs[key]

            # Calculate rewards using reward functions
            rewards = self._calculate_rewards_from_functions(
                prompts=2 * prompts, completions=completions, completion_ids_list=completion_ids_list, **reward_kwargs
            )

            # Apply missing EOS penalty if configured
            if self.args.missing_eos_penalty is not None:
                rewards[~contain_eos_token] -= self.args.missing_eos_penalty

            # Split rewards into chosen/rejected pairs
            first_half, second_half = rewards.split(batch_size)
            mask = first_half >= second_half
        elif self.judge is not None:
            # Once formatted, conversational data may contain special tokens (such as <|im_start|>) that are not
            # directly understandable by the judge and could alter its judgment. To avoid this and make the judge
            # independent of the model's chat template, we use the raw conversation data, and apply our own chat
            # template to it.
            if is_conversational({"prompt": prompts[0]}):
                environment = jinja2.Environment()
                template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
                prompts = [template.render(messages=prompt) for prompt in prompts]
                completions = [template.render(messages=completion) for completion in completions]

            ranks_of_first_completion = self.judge.judge(
                prompts, list(zip(completions[:batch_size], completions[batch_size:]))
            )

            # convert ranks to a True/False mask:
            # when rank == 0, it means the first completion is the best
            # when rank == 1, it means the second completion is the best
            mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device)

        batch_range = torch.arange(batch_size, device=device)
        chosen_indices = batch_range + (~mask * batch_size)
        rejected_indices = batch_range + (mask * batch_size)

        # Build tensor so that the first half is the chosen examples and the second half the rejected examples
        cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0)  # cr = chosen and rejected
        cr_logprobs = logprobs[cr_indices]
        cr_ref_logprobs = ref_logprobs[cr_indices]

        # mask out the padding tokens
        padding_mask = ~completion_mask.bool()
        cr_padding_mask = padding_mask[cr_indices]

        cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1)
        cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1)

        # Split the chosen and rejected examples
        chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size)
        chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size)
        pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum
        ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum

        logits = pi_logratios - ref_logratios

        if self.args.loss_type == "sigmoid":
            losses = -F.logsigmoid(self.beta * logits)
        elif self.args.loss_type == "ipo":
            losses = (logits - 1 / (2 * self.beta)) ** 2
        else:
            raise NotImplementedError(f"invalid loss type {self.loss_type}")

        loss = losses.mean()

        # Log everything
        if self.reward_funcs is not None:
            # When using reward_funcs, we have rewards instead of scores
            scores_margin = rewards[chosen_indices] - rewards[rejected_indices]
            self.stats["objective/scores_margin"].append(
                self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item()
            )
            self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(rewards.mean()).mean().item())
        self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item())
        self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item())
        self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item())

        kl = logprobs - ref_logprobs
        mean_kl = kl.sum(1).mean()
        self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
        non_score_reward = (-self.beta * kl).sum(1)
        mean_non_score_reward = non_score_reward.mean()
        self.stats["objective/non_score_reward"].append(
            self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
        )
        if self.reward_funcs is not None:
            # Calculate RLHF reward by combining rewards with non_score_reward
            rlhf_reward = rewards + non_score_reward
            self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item())

        mean_entropy = -logprobs.sum(1).mean()
        self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item())
        chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum)
        gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards)
        self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item())
        rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum)
        gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards)
        self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item())
        margin = gathered_chosen_rewards - gathered_rejected_rewards
        self.stats["rewards/margins"].append(margin.mean().item())
        accuracy = margin > 0
        self.stats["rewards/accuracies"].append(accuracy.float().mean().item())
        self.stats["beta"].append(self.beta)

        if (
            self.args.torch_empty_cache_steps is not None
            and self.state.global_step % self.args.torch_empty_cache_steps == 0
        ):
            empty_cache()

        kwargs = {}

        # For LOMO optimizers you need to explicitly use the learning rate
        if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
            kwargs["learning_rate"] = self._get_learning_rate()

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training

        if self.use_apex:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            self.accelerator.backward(loss, **kwargs)

        return loss.detach() / self.args.gradient_accumulation_steps

    # Same as Trainer._maybe_log_save_evaluate but log our metrics
    def _maybe_log_save_evaluate(
        self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time, learning_rate=None
    ):
        if self.control.should_log and self.state.global_step > self._globalstep_last_logged:
            logs: dict[str, float] = {}

            # all_gather + mean() to get average loss over all processes
            tr_loss_scalar = self._nested_gather(tr_loss).mean().item()

            # reset tr_loss to zero
            tr_loss -= tr_loss

            logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
            if grad_norm is not None:
                logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm
            if learning_rate is not None:
                logs["learning_rate"] = learning_rate
            else:
                logs["learning_rate"] = self._get_learning_rate()

            # Add our metrics
            for key, val in self.stats.items():
                logs[key] = sum(val) / len(val)
            self.stats = {key: [] for key in self.stats}  # reset stats

            self._total_loss_scalar += tr_loss_scalar
            self._globalstep_last_logged = self.state.global_step
            self.store_flos()
            self.log(logs, start_time)

        metrics = None
        if self.control.should_evaluate:
            metrics = self._evaluate(trial, ignore_keys_for_eval)
            is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial)

            if self.args.save_strategy == "best":
                self.control.should_save = is_new_best_metric

        if self.control.should_save:
            self._save_checkpoint(model, trial)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

    # Ensure the model card is saved along with the checkpoint
    def _save_checkpoint(self, model, trial):
        if self.args.hub_model_id is None:
            model_name = Path(self.args.output_dir).name
        else:
            model_name = self.args.hub_model_id.split("/")[-1]
        self.create_model_card(model_name=model_name)
        super()._save_checkpoint(model, trial)

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        # normalize `tags` to a mutable set
        if tags is None:
            tags = set()
        elif isinstance(tags, str):
            tags = {tags}
        else:
            tags = set(tags)

        if hasattr(self.model.config, "unsloth_version"):
            tags.add("unsloth")

        if "JOB_ID" in os.environ:
            tags.add("hf_jobs")

        tags.update(self._tag_names)

        # docstyle-ignore
        citation = textwrap.dedent("""\
        @article{guo2024direct,
            title        = {{Direct Language Model Alignment from Online AI Feedback}},
            author       = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel},
            year         = 2024,
            eprint       = {arXiv:2402.04792}
        }""")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="Online DPO",
            trainer_citation=citation,
            paper_title="Direct Language Model Alignment from Online AI Feedback",
            paper_id="2402.04792",
        )
        model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothOnlineDPOTrainer(_UnslothOnlineDPOTrainer):
    """
    
    Initialize OnlineDPOTrainer.

    Args:
        model (`Union[str, nn.Module, PreTrainedModel]`):
            Model to be trained. Can be either:

            - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
              path to a *directory* containing model weights saved using
              [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
              using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
              `args.model_init_kwargs`.
            - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
        ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`):
            The reference model to use for training. If None is specified, the reference model will be created from the
            model.
        judge (`BasePairwiseJudge`):
            The judge to use for pairwise comparison of model completions.
        reward_funcs (`Union[RewardFunc, list[RewardFunc]]`, *optional*, defaults to `None`):
            Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
            functions with the prompts and completions and sum the rewards. Can be either:

            - A single reward function: Can be a string (path to model), a [`~transformers.PreTrainedModel`], or a
              custom callable function.
            - A list of reward functions: Must all be of compatible types.

            Note: Only one of `judge`, or `reward_funcs` should be provided.
        args (`OnlineDPOConfig`):
            The online DPO config arguments to use for training.
        data_collator (`transformers.DataCollator`):
            The data collator to use for training. If None is specified, the default data collator
            (`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
            sequences in the batch, given a dataset of paired sequences.
        train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
            The dataset to use for training.
        eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
            The dataset to use for evaluation.
        processing_class ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.ProcessorMixin`], *optional*, defaults to `None`):
            Processing class used to process the data. If provided, will be used to automatically process the inputs
            for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
            reuse the fine-tuned model.
        reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`):
            Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:

            - A single processing class: Used when `reward_funcs` contains only one reward function.
            - A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`.

            If set to `None`, the tokenizer for each model-based reward function is automatically loaded using
            [`~transformers.AutoTokenizer.from_pretrained`].
        peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
            PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
        compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
            The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to
            metric values.
        callbacks (`list[transformers.TrainerCallback]`):
            The callbacks to use for training.
        optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
            The optimizer and scheduler to use for training.
        preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
            The function to use to preprocess the logits before computing the metrics.

    .. deprecated:: 0.22.0
        The following parameters are deprecated and will be removed in a future version:

        * `reward_model`: Use `reward_funcs` instead. For example, change `reward_model=model` to `reward_funcs=model`.
        * `reward_processing_class`: Use `reward_processing_classes` instead. For example, change
          `reward_processing_class=tokenizer` to `reward_processing_classes=tokenizer`.
    
    """
    def __init__(
        self,
        model,
        ref_model = None,
        reward_funcs = None,
        judge = None,
        args = None,
        data_collator = None,
        train_dataset = None,
        eval_dataset = None,
        processing_class = None,
        reward_processing_classes = None,
        peft_config = None,
        compute_metrics = None,
        callbacks = None,
        preprocess_logits_for_metrics = None,
        reward_model = None,
        reward_processing_class = None,
        **kwargs
    ):
        if args is None: args = UnslothOnlineDPOConfig()
        use_bf16 = getattr(args, 'bf16', False)
        if type(use_bf16) is not bool: use_bf16 = False
        use_fp16 = getattr(args, 'fp16', False)
        if type(use_fp16) is not bool: use_fp16 = False
        force_float32 = False
        full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1'
        if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'):
            print('Unsloth: Switching to float32 training since model cannot work with float16')
            force_float32 = True
        mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
        dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None)
        if dtype is None: dtype = model.get_input_embeddings().dtype
        from unsloth_zoo.utils import _get_dtype
        dtype = _get_dtype(dtype)
        float16 = dtype == torch.float16
        if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
        if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
        if force_float32:
            # Forced float32 training
            args.fp16 = False
            args.bf16 = False
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
        elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
            # Mixed precision training
            args.fp16 = float16
            args.bf16 = not float16
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
        if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
            args.eval_strategy = 'steps'
            if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
        ga_steps = getattr(args, 'gradient_accumulation_steps', None)
        if ga_steps is not None and ga_steps > 1:
            from transformers import __version__ as transformers_version
            if Version(transformers_version) <= Version('4.45.2'):
                print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
                      '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
        if getattr(args, 'eval_strategy', 'no') != 'no':
            eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
            if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
            if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
        fp16_full_eval = getattr(args, 'fp16_full_eval', False)
        if type(fp16_full_eval) is not bool: fp16_full_eval = False
        bf16_full_eval = getattr(args, 'bf16_full_eval', False)
        if type(bf16_full_eval) is not bool: bf16_full_eval = False
        if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
        if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
        if force_float32:
            args.bf16_full_eval = False
            args.fp16_full_eval = False
        elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
            args.bf16_full_eval = True
            args.fp16_full_eval = False
        elif not bf16_full_eval and not fp16_full_eval:
            args.bf16_full_eval = args.bf16
            args.fp16_full_eval = args.fp16
        _output_logits = False
        if locals().get('compute_metrics', None) is not None: _output_logits = True
        if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
        if _output_logits:
            os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
        if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
            pass
        else:
            model_max_seq_length = getattr(model, 'max_seq_length', None)
            args_max_seq_length  = getattr(args,  'max_seq_length', None)
            if args_max_seq_length is None and model_max_seq_length is not None:
                max_seq_length = model.max_seq_length
                if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
        if model is not None and hasattr(model, 'for_training'):
            model.for_training()
        if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
        if 'processing_class' in locals():
            if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
            if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
        __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
        from unsloth_zoo.vision_utils import UnslothVisionDataCollator
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
                data_collator = TransformersDataCollatorForLanguageModeling(
                    __tokenizer,
                    mlm = False,
                    mlm_probability = 0.0,
                    pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                )
            elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
                data_collator = DataCollatorForSeq2Seq(
                    __tokenizer,
                    pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                )
        else:
            if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
            if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
            if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
                if isinstance(data_collator, DataCollatorForSeq2Seq):
                    data_collator = DataCollatorForSeq2Seq(
                        __tokenizer.tokenizer,
                        pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                    )
                else:
                    data_collator = TransformersDataCollatorForLanguageModeling(
                        __tokenizer.tokenizer,
                        mlm = False,
                        mlm_probability = 0.0,
                        pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
                    )
        other_metrics = []
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('online_dpo_trainer', other_metrics)
        
        # [TODO] Fix up DataParallel multiplying batch sizes
        # [TODO] DDP works, but DP seems to not work? [TODO]
        if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1:
            if getattr(args, "_n_gpu", 1) != 1:
                args._n_gpu = 1
        if "model" in locals() and hasattr(model, "for_training"):
            model.for_training()
        super().__init__(
            model = model,
            ref_model = ref_model,
            reward_funcs = reward_funcs,
            judge = judge,
            args = args,
            data_collator = data_collator,
            train_dataset = train_dataset,
            eval_dataset = eval_dataset,
            processing_class = processing_class,
            reward_processing_classes = reward_processing_classes,
            peft_config = peft_config,
            compute_metrics = compute_metrics,
            callbacks = callbacks,
            preprocess_logits_for_metrics = preprocess_logits_for_metrics,
            reward_model = reward_model,
            reward_processing_class = reward_processing_class,**kwargs)
        if "model" in locals() and hasattr(model, "for_inference"):
            model.for_inference()
        if hasattr(self, 'neftune_hook_handle'):
            self.neftune_hook_handle.remove()
            if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
        if getattr(args, 'neftune_noise_alpha', None) is not None:
            model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
        pass
        if hasattr(self, 'accelerator'):
            scaler = self.accelerator.scaler
            current_model = model
            while hasattr(current_model, 'model'):
                current_model.accelerator_scaler = scaler
                current_model = current_model.model
            current_model.accelerator_scaler = scaler
        pass
        if hasattr(self, 'train'):
            self.train = MethodType(prepare_for_training_mode(self.__class__.train), self)
        pass
        
pass


if hasattr(logger, "addFilter"):
    import logging
    class HideLoggingMessage(logging.Filter):
        def __init__(self, text): self.text = text
        def filter(self, x): return not (self.text in x.getMessage())
    pass
    logger.addFilter(HideLoggingMessage("`use_cache=True`"))