File size: 1,598 Bytes
6b90a3f
826e7d1
 
 
6b90a3f
826e7d1
6b90a3f
7c19a72
 
 
 
 
6b90a3f
826e7d1
6b90a3f
8eb77d3
6b90a3f
7c19a72
 
 
 
6b90a3f
7bd5c34
 
 
 
 
 
 
 
 
 
 
 
 
6b90a3f
 
 
7c19a72
 
 
 
6b90a3f
 
 
7c19a72
 
 
 
 
 
 
 
 
 
e1c88da
6b90a3f
 
4f3392c
 
 
 
 
6b90a3f
7c19a72
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment
metrics:
- accuracy
model-index:
- name: result
  results: []
language:
- ar
- en
library_name: transformers
pipeline_tag: text-classification
---
---

# SentimentArEng

This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.502831
- Accuracy: 0.798512

# inference with pipeline

```
from transformers import pipeline
model_path = "Noor0/SentimentArEng"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("تعامل الموظفين كان أقل من المتوقع")

```

 - output:
 - [{'label': 'negative', 'score': 0.9905518293380737}]


## Training and evaluation data

 
 - Training set: 114,885 records 
 - evaluation data: 12,765 records


## Training procedure



| Training Loss | Epoch |Validation Loss | Accuracy  |
|:-------------:|:-----:|:---------------:|:--------:|
| 0.4511        | 2.0   |0.502831         | 0.7985   |
| 0.3655        | 3.0   |0.576118         | 0.7954   |
| 0.3019        | 4.0   |0.625391         | 0.7985   |
| 0.2466        | 5.0   |0.835689         | 0.7979   |



### Training hyperparameters

- The following hyperparameters were used during training:
    - learning_rate=2e-5
    - num_train_epochs=20
    - weight_decay=0.01
    - batch_size=16,  
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.14.1